

Computer	Science:	A	Very	Short	Introduction

VERY	SHORT	INTRODUCTIONS	are	for	anyone	wanting	a	stimulating	and	accessible	way	into	a	new
subject.	They	are	written	by	experts,	and	have	been	translated	into	more	than	40	different	languages.

The	series	began	in	1995,	and	now	covers	a	wide	variety	of	topics	in	every	discipline.	The	VSI	library	now
contains	over	450	volumes—a	Very	Short	Introduction	to	everything	from	Psychology	and	Philosophy	of
Science	to	American	History	and	Relativity—and	continues	to	grow	in	every	subject	area.

Very	Short	Introductions	available	now:
ACCOUNTING	Christopher	Nobes

ADVERTISING	Winston	Fletcher

AFRICAN	AMERICAN	RELIGION	Eddie	S.	Glaude	Jr

AFRICAN	HISTORY	John	Parker	and	Richard	Rathbone

AFRICAN	RELIGIONS	Jacob	K.	Olupona

AGNOSTICISM	Robin	Le	Poidevin

ALEXANDER	THE	GREAT	Hugh	Bowden

ALGEBRA	Peter	M.	Higgins

AMERICAN	HISTORY	Paul	S.	Boyer

AMERICAN	IMMIGRATION	David	A.	Gerber

AMERICAN	LEGAL	HISTORY	G.	Edward	White

AMERICAN	POLITICAL	HISTORY	Donald	Critchlow

AMERICAN	POLITICAL	PARTIES	AND	ELECTIONS	L.	Sandy	Maisel

AMERICAN	POLITICS	Richard	M.	Valelly

THE	AMERICAN	PRESIDENCY	Charles	O.	Jones

THE	AMERICAN	REVOLUTION	Robert	J.	Allison

AMERICAN	SLAVERY	Heather	Andrea	Williams

THE	AMERICAN	WEST	Stephen	Aron

AMERICAN	WOMEN’S	HISTORY	Susan	Ware

ANAESTHESIA	Aidan	O’Donnell

ANARCHISM	Colin	Ward

ANCIENT	ASSYRIA	Karen	Radner

ANCIENT	EGYPT	Ian	Shaw

ANCIENT	EGYPTIAN	ART	AND	ARCHITECTURE	Christina	Riggs

ANCIENT	GREECE	Paul	Cartledge

THE	ANCIENT	NEAR	EAST	Amanda	H.	Podany

ANCIENT	PHILOSOPHY	Julia	Annas

ANCIENT	WARFARE	Harry	Sidebottom

ANGELS	David	Albert	Jones

ANGLICANISM	Mark	Chapman

THE	ANGLO—SAXON	AGE	John	Blair

THE	ANIMAL	KINGDOM	Peter	Holland

ANIMAL	RIGHTS	David	DeGrazia

THE	ANTARCTIC	Klaus	Dodds

ANTISEMITISM	Steven	Beller

ANXIETY	Daniel	Freeman	and	Jason	Freeman

THE	APOCRYPHAL	GOSPELS	Paul	Foster

ARCHAEOLOGY	Paul	Bahn

ARCHITECTURE	Andrew	Ballantyne

ARISTOCRACY	William	Doyle

ARISTOTLE	Jonathan	Barnes

ART	HISTORY	Dana	Arnold

ART	THEORY	Cynthia	Freeland

ASTROBIOLOGY	David	C.	Catling

ATHEISM	Julian	Baggini

AUGUSTINE	Henry	Chadwick

AUSTRALIA	Kenneth	Morgan

AUTISM	Uta	Frith

THE	AVANT	GARDE	David	Cottington

THE	AZTECS	Davíd	Carrasco

BACTERIA	Sebastian	G.	B.	Amyes

BARTHES	Jonathan	Culler

THE	BEATS	David	Sterritt

BEAUTY	Roger	Scruton

BESTSELLERS	John	Sutherland

THE	BIBLE	John	Riches

BIBLICAL	ARCHAEOLOGY	Eric	H.	Cline

BIOGRAPHY	Hermione	Lee

BLACK	HOLES	Katherine	Blundell

THE	BLUES	Elijah	Wald

THE	BODY	Chris	Shilling

THE	BOOK	OF	MORMON	Terryl	Givens

BORDERS	Alexander	C.	Diener	and	Joshua	Hagen

THE	BRAIN	Michael	O’Shea

THE	BRITISH	CONSTITUTION	Martin	Loughlin

THE	BRITISH	EMPIRE	Ashley	Jackson

BRITISH	POLITICS	Anthony	Wright

BUDDHA	Michael	Carrithers

BUDDHISM	Damien	Keown

BUDDHIST	ETHICS	Damien	Keown

BYZANTIUM	Peter	Sarris

CANCER	Nicholas	James

CAPITALISM	James	Fulcher

CATHOLICISM	Gerald	O’Collins

CAUSATION	Stephen	Mumford	and	Rani	Lill	Anjum

THE	CELL	Terence	Allen	and	Graham	Cowling

THE	CELTS	BarryCunliffe

CHAOS	Leonard	Smith

CHEMISTRY	Peter	Atkins

CHILD	PSYCHOLOGY	Usha	Goswami

CHILDREN’S	LITERATURE	Kimberley	Reynolds

CHINESE	LITERATURE	Sabina	Knight

CHOICE	THEORY	Michael	Allingham

CHRISTIAN	ART	Beth	Williamson

CHRISTIAN	ETHICS	D.	Stephen	Long

CHRISTIANITY	Linda	Woodhead

CITIZENSHIP	Richard	Bellamy

CIVIL	ENGINEERING	David	Muir	Wood

CLASSICAL	LITERATURE	William	Allan

CLASSICAL	MYTHOLOGY	Helen	Morales

CLASSICS	Mary	Beard	and	John	Henderson

CLAUSEWITZ	Michael	Howard

CLIMATE	Mark	Maslin

CLIMATE	CHANGE	Mark	Maslin

THE	COLD	WAR	Robert	McMahon

COLONIAL	AMERICA	Alan	Taylor

COLONIAL	LATIN	AMERICAN	LITERATURE	Rolena	Adorno

COMEDY	Matthew	Bevis

COMMUNISM	Leslie	Holmes

COMPLEXITY	John	H.	Holland

THE	COMPUTER	Darrel	Ince

COMPUTER	SCIENCE	Subrata	Dasgupta

CONFUCIANISM	Daniel	K.	Gardner

THE	CONQUISTADORS	Matthew	Restall	and	Felipe	Fernández-Armesto

CONSCIENCE	Paul	Strohm

CONSCIOUSNESS	Susan	Blackmore

CONTEMPORARY	ART	Julian	Stallabrass

CONTEMPORARY	FICTION	Robert	Eaglestone

CONTINENTAL	PHILOSOPHY	Simon	Critchley

CORAL	REEFS	Charles	Sheppard

CORPORATE	SOCIAL	RESPONSIBILITY	Jeremy	Moon

CORRUPTION	Leslie	Holmes

COSMOLOGY	Peter	Coles

CRIME	FICTION	Richard	Bradford

CRIMINAL	JUSTICE	Julian	V.	Roberts

CRITICAL	THEORY	Stephen	Eric	Bronner

THE	CRUSADES	Christopher	Tyerman

CRYPTOGRAPHY	Fred	Piper	and	Sean	Murphy

THE	CULTURAL	REVOLUTION	Richard	Curt	Kraus

DADA	AND	SURREALISM	David	Hopkins

DANTE	Peter	Hainsworth	and	David	Robey

DARWIN	Jonathan	Howard

THE	DEAD	SEA	SCROLLS	Timothy	Lim

DEMOCRACY	Bernard	Crick

DERRIDA	Simon	Glendinning

DESCARTES	Tom	Sorell

DESERTS	Nick	Middleton

DESIGN	John	Heskett

DEVELOPMENTAL	BIOLOGY	Lewis	Wolpert

THE	DEVIL	Darren	Oldridge

DIASPORA	Kevin	Kenny

DICTIONARIES	Lynda	Mugglestone

DINOSAURS	David	Norman

DIPLOMACY	Joseph	M.	Siracusa

DOCUMENTARY	FILM	Patricia	Aufderheide

DREAMING	J.	Allan	Hobson

DRUGS	Leslie	Iversen

DRUIDS	Barry	Cunliffe

EARLY	MUSIC	Thomas	Forrest	Kelly

THE	EARTH	Martin	Redfern

EARTH	SYSTEM	SCIENCE	Tim	Lenton

ECONOMICS	Partha	Dasgupta

EDUCATION	Gary	Thomas

EGYPTIAN	MYTH	Geraldine	Pinch

EIGHTEENTH‑CENTURY	BRITAIN	Paul	Langford
THE	ELEMENTS	Philip	Ball

EMOTION	Dylan	Evans

EMPIRE	Stephen	Howe

ENGELS	Terrell	Carver

ENGINEERING	David	Blockley

ENGLISH	LITERATURE	Jonathan	Bate

THE	ENLIGHTENMENT	John	Robertson

ENTREPRENEURSHIP	Paul	Westhead	and	Mike	Wright

ENVIRONMENTAL	ECONOMICS	Stephen	Smith

ENVIRONMENTAL	POLITICS	Andrew	Dobson

EPICUREANISM	Catherine	Wilson

EPIDEMIOLOGY	Rodolfo	Saracci

ETHICS	Simon	Blackburn

ETHNOMUSICOLOGY	Timothy	Rice

THE	ETRUSCANS	Christopher	Smith

THE	EUROPEAN	UNION	John	Pinder	and	Simon	Usherwood

EVOLUTION	Brian	and	Deborah	Charlesworth

EXISTENTIALISM	Thomas	Flynn

EXPLORATION	Stewart	A.	Weaver

THE	EYE	Michael	Land

FAMILY	LAW	Jonathan	Herring

FASCISM	Kevin	Passmore

FASHION	Rebecca	Arnold

FEMINISM	Margaret	Walters

FILM	Michael	Wood

FILM	MUSIC	Kathryn	Kalinak

THE	FIRST	WORLD	WAR	Michael	Howard

FOLK	MUSIC	Mark	Slobin

FOOD	John	Krebs

FORENSIC	PSYCHOLOGY	David	Canter

FORENSIC	SCIENCE	Jim	Fraser

FORESTS	Jaboury	Ghazoul

FOSSILS	Keith	Thomson

FOUCAULT	Gary	Gutting

THE	FOUNDING	FATHERS	R.	B.	Bernstein

FRACTALS	Kenneth	Falconer

FREE	SPEECH	Nigel	Warburton

FREE	WILL	Thomas	Pink

FRENCH	LITERATURE	John	D.	Lyons

THE	FRENCH	REVOLUTION	William	Doyle

FREUD	Anthony	Storr

FUNDAMENTALISM	Malise	Ruthven

FUNGI	Nicholas	P.	Money

GALAXIES	John	Gribbin

GALILEO	Stillman	Drake

GAME	THEORY	Ken	Binmore

GANDHI	Bhikhu	Parekh

GENES	Jonathan	Slack

GENIUS	Andrew	Robinson

GEOGRAPHY	John	Matthews	and	David	Herbert

GEOPOLITICS	Klaus	Dodds

GERMAN	LITERATURE	Nicholas	Boyle

GERMAN	PHILOSOPHY	Andrew	Bowie

GLOBAL	CATASTROPHES	Bill	McGuire

GLOBAL	ECONOMIC	HISTORY	Robert	C.	Allen

GLOBALIZATION	Manfred	Steger

GOD	John	Bowker

GOETHE	Ritchie	Robertson

THE	GOTHIC	Nick	Groom

GOVERNANCE	Mark	Bevir

THE	GREAT	DEPRESSION	AND	THE	NEW	DEAL	Eric	Rauchway

HABERMAS	James	Gordon	Finlayson

HAPPINESS	Daniel	M.	Haybron

HEGEL	Peter	Singer

HEIDEGGER	Michael	Inwood

HERMENEUTICS	Jens	Zimmermann

HERODOTUS	Jennifer	T.	Roberts

HIEROGLYPHS	Penelope	Wilson

HINDUISM	Kim	Knott

HISTORY	John	H.	Arnold

THE	HISTORY	OF	ASTRONOMY	Michael	Hoskin

THE	HISTORY	OF	CHEMISTRY	William	H.	Brock

THE	HISTORY	OF	LIFE	Michael	Benton

THE	HISTORY	OF	MATHEMATICS	Jacqueline	Stedall

THE	HISTORY	OF	MEDICINE	William	Bynum

THE	HISTORY	OF	TIME	Leofranc	Holford‑Strevens
HIV/AIDS	Alan	Whiteside

HOBBES	Richard	Tuck

HOLLYWOOD	Peter	Decherney

HORMONES	Martin	Luck

HUMAN	ANATOMY	Leslie	Klenerman

HUMAN	EVOLUTION	Bernard	Wood

HUMAN	RIGHTS	Andrew	Clapham

HUMANISM	Stephen	Law

HUME	A.	J.	Ayer

HUMOUR	Noël	Carroll

THE	ICE	AGE	Jamie	Woodward

IDEOLOGY	Michael	Freeden

INDIAN	PHILOSOPHY	Sue	Hamilton

INFECTIOUS	DISEASE	Marta	L.	Wayne	and	Benjamin	M.	Bolker

INFORMATION	Luciano	Floridi

INNOVATION	Mark	Dodgson	and	David	Gann

INTELLIGENCE	Ian	J.	Deary

INTERNATIONAL	LAW	Vaughan	Lowe

INTERNATIONAL	MIGRATION	Khalid	Koser

INTERNATIONAL	RELATIONS	Paul	Wilkinson

INTERNATIONAL	SECURITY	Christopher	S.	Browning

IRAN	Ali	M.	Ansari

ISLAM	Malise	Ruthven

ISLAMIC	HISTORY	Adam	Silverstein

ITALIAN	LITERATURE	Peter	Hainsworth	and	David	Robey

JESUS	Richard	Bauckham

JOURNALISM	Ian	Hargreaves

JUDAISM	Norman	Solomon

JUNG	Anthony	Stevens

KABBALAH	Joseph	Dan

KAFKA	Ritchie	Robertson

KANT	Roger	Scruton

KEYNES	Robert	Skidelsky

KIERKEGAARD	Patrick	Gardiner

KNOWLEDGE	Jennifer	Nagel

THE	KORAN	Michael	Cook

LANDSCAPE	ARCHITECTURE	Ian	H.	Thompson

LANDSCAPES	AND	GEOMORPHOLOGY	Andrew	Goudie	and	Heather	Viles

LANGUAGES	Stephen	R.	Anderson

LATE	ANTIQUITY	Gillian	Clark

LAW	Raymond	Wacks

THE	LAWS	OF	THERMODYNAMICS	Peter	Atkins

LEADERSHIP	Keith	Grint

LIBERALISM	Michael	Freeden

LIGHT	Ian	Walmsley

LINCOLN	Allen	C.	Guelzo

LINGUISTICS	Peter	Matthews

LITERARY	THEORY	Jonathan	Culler

LOCKE	John	Dunn

LOGIC	Graham	Priest

LOVE	Ronald	de	Sousa

MACHIAVELLI	Quentin	Skinner

MADNESS	Andrew	Scull

MAGIC	Owen	Davies

MAGNA	CARTA	Nicholas	Vincent

MAGNETISM	Stephen	Blundell

MALTHUS	Donald	Winch

MANAGEMENT	John	Hendry

MAO	Delia	Davin

MARINE	BIOLOGY	Philip	V.	Mladenov

THE	MARQUIS	DE	SADE	John	Phillips

MARTIN	LUTHER	Scott	H.	Hendrix

MARTYRDOM	Jolyon	Mitchell

MARX	Peter	Singer

MATERIALS	Christopher	Hall

MATHEMATICS	Timothy	Gowers

THE	MEANING	OF	LIFE	Terry	Eagleton

MEDICAL	ETHICS	Tony	Hope

MEDICAL	LAW	Charles	Foster

MEDIEVAL	BRITAIN	John	Gillingham	and	Ralph	A.	Griffiths

MEDIEVAL	LITERATURE	Elaine	Treharne

MEDIEVAL	PHILOSOPHY	John	Marenbon

MEMORY	Jonathan	K.	Foster

METAPHYSICS	Stephen	Mumford

THE	MEXICAN	REVOLUTION	Alan	Knight

MICHAEL	FARADAY	Frank	A.	J.	L.	James

MICROBIOLOGY	Nicholas	P.	Money

MICROECONOMICS	Avinash	Dixit

MICROSCOPY	Terence	Allen

THE	MIDDLE	AGES	Miri	Rubin

MINERALS	David	Vaughan

MODERN	ART	David	Cottington

MODERN	CHINA	Rana	Mitter

MODERN	DRAMA	Kirsten	E.	Shepherd-Barr

MODERN	FRANCE	Vanessa	R.	Schwartz

MODERN	IRELAND	Senia	Pašeta

MODERN	JAPAN	Christopher	Goto-Jones

MODERN	LATIN	AMERICAN	LITERATURE	Roberto	González	Echevarría

MODERN	WAR	Richard	English

MODERNISM	Christopher	Butler

MOLECULES	Philip	Ball

THE	MONGOLS	Morris	Rossabi

MOONS	David	A.	Rothery

MORMONISM	Richard	Lyman	Bushman

MOUNTAINS	Martin	F.	Price

MUHAMMAD	Jonathan	A.	C.	Brown

MULTICULTURALISM	Ali	Rattansi

MUSIC	Nicholas	Cook

MYTH	Robert	A.	Segal

THE	NAPOLEONIC	WARS	Mike	Rapport

NATIONALISM	Steven	Grosby

NELSON	MANDELA	Elleke	Boehmer

NEOLIBERALISM	Manfred	Steger	and	Ravi	Roy

NETWORKS	Guido	Caldarelli	and	Michele	Catanzaro

THE	NEW	TESTAMENT	Luke	Timothy	Johnson

THE	NEW	TESTAMENT	AS	LITERATURE	Kyle	Keefer

NEWTON	Robert	Iliffe

NIETZSCHE	Michael	Tanner

NINETEENTH‑CENTURY	BRITAIN	Christopher	Harvie	and	H.	C.	G.	Matthew

THE	NORMAN	CONQUEST	George	Garnett

NORTH	AMERICAN	INDIANS	Theda	Perdue	and	Michael	D.	Green

NORTHERN	IRELAND	Marc	Mulholland

NOTHING	Frank	Close

NUCLEAR	PHYSICS	Frank	Close

NUCLEAR	POWER	Maxwell	Irvine

NUCLEAR	WEAPONS	Joseph	M.	Siracusa

NUMBERS	Peter	M.	Higgins

NUTRITION	David	A.	Bender

OBJECTIVITY	Stephen	Gaukroger

THE	OLD	TESTAMENT	Michael	D.	Coogan

THE	ORCHESTRA	D.	Kern	Holoman

ORGANIZATIONS	Mary	Jo	Hatch

PAGANISM	Owen	Davies

THE	PALESTINIAN-ISRAELI	CONFLICT	Martin	Bunton

PARTICLE	PHYSICS	Frank	Close

PAUL	E.	P.	Sanders

PEACE	Oliver	P.	Richmond

PENTECOSTALISM	William	K.	Kay

THE	PERIODIC	TABLE	Eric	R.	Scerri

PHILOSOPHY	Edward	Craig

PHILOSOPHY	IN	THE	ISLAMIC	WORLD	Peter	Adamson

PHILOSOPHY	OF	LAW	Raymond	Wacks

PHILOSOPHY	OF	SCIENCE	Samir	Okasha

PHOTOGRAPHY	Steve	Edwards

PHYSICAL	CHEMISTRY	Peter	Atkins

PILGRIMAGE	Ian	Reader

PLAGUE	Paul	Slack

PLANETS	David	A.	Rothery

PLANTS	Timothy	Walker

PLATE	TECTONICS	Peter	Molnar

PLATO	Julia	Annas

POLITICAL	PHILOSOPHY	David	Miller

POLITICS	Kenneth	Minogue

POSTCOLONIALISM	Robert	Young

POSTMODERNISM	Christopher	Butler

POSTSTRUCTURALISM	Catherine	Belsey

PREHISTORY	Chris	Gosden

PRESOCRATIC	PHILOSOPHY	Catherine	Osborne

PRIVACY	Raymond	Wacks

PROBABILITY	John	Haigh

PROGRESSIVISM	Walter	Nugent

PROTESTANTISM	Mark	A.	Noll

PSYCHIATRY	Tom	Burns

PSYCHOANALYSIS	Daniel	Pick

PSYCHOLOGY	Gillian	Butler	and	Freda	McManus

PSYCHOTHERAPY	Tom	Burns	and	Eva	Burns-Lundgren

PURITANISM	Francis	J.	Bremer

THE	QUAKERS	Pink	Dandelion

QUANTUM	THEORY	John	Polkinghorne

RACISM	Ali	Rattansi

RADIOACTIVITY	Claudio	Tuniz

RASTAFARI	Ennis	B.	Edmonds

THE	REAGAN	REVOLUTION	Gil	Troy

REALITY	Jan	Westerhoff

THE	REFORMATION	Peter	Marshall

RELATIVITY	Russell	Stannard

RELIGION	IN	AMERICA	Timothy	Beal

THE	RENAISSANCE	Jerry	Brotton

RENAISSANCE	ART	Geraldine	A.	Johnson

REVOLUTIONS	Jack	A.	Goldstone

RHETORIC	Richard	Toye

RISK	Baruch	Fischhoff	and	John	Kadvany

RITUAL	Barry	Stephenson

RIVERS	Nick	Middleton

ROBOTICS	Alan	Winfield

ROMAN	BRITAIN	Peter	Salway

THE	ROMAN	EMPIRE	Christopher	Kelly

THE	ROMAN	REPUBLIC	David	M.	Gwynn

ROMANTICISM	Michael	Ferber

ROUSSEAU	Robert	Wokler

RUSSELL	A.	C.	Grayling

RUSSIAN	HISTORY	Geoffrey	Hosking

RUSSIAN	LITERATURE	Catriona	Kelly

THE	RUSSIAN	REVOLUTION	S.	A.	Smith

SCHIZOPHRENIA	Chris	Frith	and	Eve	Johnstone

SCHOPENHAUER	Christopher	Janaway

SCIENCE	AND	RELIGION	Thomas	Dixon

SCIENCE	FICTION	David	Seed

THE	SCIENTIFIC	REVOLUTION	Lawrence	M.	Principe

SCOTLAND	Rab	Houston

SEXUALITY	Véronique	Mottier

SIKHISM	Eleanor	Nesbitt

THE	SILK	ROAD	James	A.	Millward

SLANG	Jonathon	Green

SLEEP	Steven	W.	Lockley	and	Russell	G.	Foster

SOCIAL	AND	CULTURAL	ANTHROPOLOGY	John	Monaghan	and	Peter	Just

SOCIAL	PSYCHOLOGY	Richard	J.	Crisp

SOCIAL	WORK	Sally	Holland	and	Jonathan	Scourfield

SOCIALISM	Michael	Newman

SOCIOLINGUISTICS	John	Edwards

SOCIOLOGY	Steve	Bruce

SOCRATES	C.	C.	W.	Taylor

SOUND	Mike	Goldsmith

THE	SOVIET	UNION	Stephen	Lovell

THE	SPANISH	CIVIL	WAR	Helen	Graham

SPANISH	LITERATURE	Jo	Labanyi

SPINOZA	Roger	Scruton

SPIRITUALITY	Philip	Sheldrake

SPORT	Mike	Cronin

STARS	Andrew	King

STATISTICS	David	J.	Hand

STEM	CELLS	Jonathan	Slack

STRUCTURAL	ENGINEERING	David	Blockley

STUART	BRITAIN	John	Morrill

SUPERCONDUCTIVITY	Stephen	Blundell

SYMMETRY	Ian	Stewart

TAXATION	Stephen	Smith

TEETH	Peter	S.	Ungar

TERRORISM	Charles	Townshend

THEATRE	Marvin	Carlson

THEOLOGY	David	F.	Ford

THOMAS	AQUINAS	Fergus	Kerr

THOUGHT	Tim	Bayne

TIBETAN	BUDDHISM	Matthew	T.	Kapstein

TOCQUEVILLE	Harvey	C.	Mansfield

TRAGEDY	Adrian	Poole

THE	TROJAN	WAR	Eric	H.	Cline

TRUST	Katherine	Hawley

THE	TUDORS	John	Guy

TWENTIETH‑CENTURY	BRITAIN	Kenneth	O.	Morgan

THE	UNITED	NATIONS	Jussi	M.	Hanhimäki

THE	U.S.	CONGRESS	Donald	A.	Ritchie

THE	U.S.	SUPREME	COURT	Linda	Greenhouse

UTOPIANISM	Lyman	Tower	Sargent

THE	VIKINGS	Julian	Richards

VIRUSES	Dorothy	H.	Crawford

WATER	John	Finney

WILLIAM	SHAKESPEARE	Stanley	Wells

WITCHCRAFT	Malcolm	Gaskill

WITTGENSTEIN	A.	C.	Grayling

WORK	Stephen	Fineman

WORLD	MUSIC	Philip	Bohlman

THE	WORLD	TRADE	ORGANIZATION	Amrita	Narlikar

WORLD	WAR	II	Gerhard	L.	Weinberg

WRITING	AND	SCRIPT	Andrew	Robinson

Available	soon:
THE	WELFARE	STATE	David	Garland

CRYSTALLOGRAPHY	A.	M.	Glazer

SHAKESPEARE’S	COMEDIES	Bart	van	Es

ASTROPHYSICS	James	Binney

AGRICULTURE	Paul	Brassley	and	Richard	Soffe

For	more	information	visit	our	website

www.oup.com/vsi/

http://www.oup.com/vsi/

Subrata	Dasgupta

COMPUTER	SCIENCE
A	Very	Short	Introduction

Great	Clarendon	Street,	Oxford,	ox2	6DP,	United	Kingdom

Oxford	University	Press	is	a	department	of	the	University	of	Oxford.	It	furthers	the	University’s	objective	of	excellence
in	research,	scholarship,	and	education	by	publishing	worldwide.	Oxford	is	a	registered	trade	mark	of	Oxford	University

Press	in	the	UK	and	in	certain	other	countries

©	Subrata	Dasgupta	2016

The	moral	rights	of	the	author	have	been	asserted

First	edition	published	in	2016

Impression:	1

All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any
form	or	by	any	means,	without	the	prior	permission	in	writing	of	Oxford	University	Press,	or	as	expressly	permitted	by
law,	by	licence	or	under	terms	agreed	with	the	appropriate	reprographics	rights	organization.	Enquiries	concerning
reproduction	outside	the	scope	of	the	above	should	be	sent	to	the	Rights	Department,	Oxford	University	Press,	at	the

address	above

You	must	not	circulate	this	work	in	any	other	form	and	you	must	impose	this	same	condition	on	any	acquirer

Published	in	the	United	States	of	America	by	Oxford	University	Press	198	Madison	Avenue,	New	York,	NY	10016,
United	States	of	America

British	Library	Cataloguing	in	Publication	Data

Data	available

Library	of	Congress	Control	Number:	2015950971

ISBN	978–0–19–873346–1

ebook	ISBN	978–0–19–105320–7

Printed	in	Great	Britain	by	Ashford	Colour	Press	Ltd,	Gosport,	Hampshire

Links	to	third	party	websites	are	provided	by	Oxford	in	good	faith	and	for	information	only.	Oxford	disclaims	any
responsibility	for	the	materials	contained	in	any	third	party	website	referenced	in	this	work.

To

Anton	Rippon

Contents

Preface

Acknowledgements

List	of	illustrations

1 	The	‘stuff’	of	computing

2 	Computational	artefacts

3 	Algorithmic	thinking

4 	The	art,	science,	and	engineering	of	programming

5 	The	discipline	of	computer	architecture

6 	Heuristic	computing

7 	Computational	thinking

Epilogue:	is	computer	science	a	universal	science?

Further	reading

Index

Preface

The	1960s	were	tumultuous	times,	socially	and	culturally.	But	tucked	away	amidst	the
folds	of	the	Cold	War,	civil	rights	activism,	anti-war	demonstrations,	the	feminist
movement,	student	revolt,	flower-power,	sit-ins,	and	left-radical	insurrections—almost
unnoticed—a	new	science	came	into	being	on	university	campuses	in	the	West	and	even,
albeit	more	tentatively,	in	some	regions	of	the	non-Western	world.

This	science	was	centred	on	a	new	kind	of	machine:	the	electronic	digital	computer.	The
technology	surrounding	this	machine	was	called	by	a	variety	of	names,	most	commonly,
‘automatic	computation’,	‘automatic	computing’,	or	‘information	processing’.	In	the
English-speaking	world	this	science	was	most	widely	called	computer	science,	while	in
Europe	it	came	to	be	labelled	‘informatique’,	or	‘informatik’.

The	technological	idea	of	automatic	computation—designing	and	building	real	machines
that	would	compute	with	minimal	human	intervention—can	at	least	be	traced	back	to	the
obsessive	dreams	of	the	English	mathematician	and	intellectual	gadfly	Charles	Babbage	in
the	early	19th	century,	if	not	further	back.	The	mathematical	concept	of	computing	was
first	studied	in	the	late	1930s	by	the	logicians	Alan	Turing	in	England	and	Alonzo	Church
in	the	United	States.	But	the	impetus	for	a	proper	empirical	science	of	computing	had	to
wait	until	the	invention,	design,	and	implementation	of	the	electronic	digital	computer	in
the	1940s,	just	after	the	end	of	the	Second	World	War.	Even	then,	there	was	a	gestation
period.	An	autonomous	science	with	a	name	and	an	identity	of	its	own	only	emerged	in
the	1960s	when	universities	began	offering	undergraduate	and	graduate	degrees	in
computer	science,	and	the	first	generation	of	formally	trained	computer	scientists	emerged
from	the	campuses.

Since	the	advent	of	the	electronic	digital	computer	in	1946,	the	spectacular	growth	of	the
technologies	associated	with	this	machine	(nowadays	called	generically	‘information
technology’	or	‘IT’)	and	the	related	cultural	and	social	transformation	(expressed	in	such
terms	as	‘information	age’,	‘information	revolution’,	‘information	society’)	is	visible	for
all	to	see	and	experience.	Indeed,	we	are	practically	engulfed	by	this	techno-social	milieu.
The	science—the	intellectual	discipline—underlying	the	technology,	however,	is	less
visible	and	certainly	less	known	or	understood	outside	the	professional	computer	science
community.	Yet	computer	science	surely	stands	alongside	the	likes	of	molecular	biology
and	cognitive	science	as	being	amongst	the	most	consequential	new	sciences	of	the	post-
Second	World	War	era.	Moreover,	there	is	a	certain	strangeness	to	computer	science	that
compels	attention	and	sets	it	apart	from	all	other	sciences.

My	intent	in	this	book	is	to	offer	the	intellectually	curious	reader	seriously	interested	in
scientific	ideas	and	principles	the	basis	for	an	understanding	of	the	fundamental	nature	of

computer	science;	to	enrich,	if	you	will,	the	public	understanding	of	this	strange,
historically	unique,	highly	consequential,	and	still	new,	science.	Put	simply,	this	book
strives	to	answer	in	direct,	immediate,	and	concise	fashion	the	question:	What	is	computer
science?

Before	we	proceed,	some	terminological	clarity	is	in	order.	In	this	book	I	will	use	the	word
computing	as	a	verb	to	denote	a	certain	kind	of	activity;	computation	is	used	as	a	noun	to
signify	the	outcome	of	computing;	computational	is	used	as	an	adjective;	computer	is	a
noun	which	will	refer	to	a	device,	artefact,	or	system	that	does	computing;	artefact	refers
to	anything	made	by	humans	(or,	sometimes,	animals);	and	a	computational	artefact	is	any
artefact	that	participates	in	computational	work.

Finally,	a	caveat	must	be	stated.	This	book	begins	by	accepting	the	proposition	that
computer	science	is	indeed	a	science;	that	is,	it	manifests	the	broad	attributes	associated
with	the	concept	of	science,	notably,	that	it	entails	the	systematic	blend	of	empirical,
conceptual,	mathematical	and	logical,	quantitative	and	qualitative	modes	of	inquiry	into
the	nature	of	a	certain	kind	of	phenomena.	Questioning	this	assumption	is	an	exercise	in
the	philosophy	of	science	that	is	beyond	the	scope	of	this	book.	The	abiding	issue	of
interest	here	is	the	nature	of	computer	science	qua	science	and,	especially,	its	distinct	and
distinguishing	character.

Acknowledgements

I	thank	Latha	Menon,	my	editor	at	OUP	for	her	support	and	sage	advice	on	this	project
from	its	very	onset.	Her	comments	on	the	penultimate	version	of	the	book	were	especially
insightful.

Jenny	Nugee	always	responded	readily	with	editorial	help	and	suggestions	at	various
stages	of	this	work.	I	thank	her.

Four	anonymous	readers	of	two	different	drafts	of	the	manuscript	offered	invaluable
suggestions	and	comments	which	I	took	seriously.	I	am	most	grateful	to	them	and	wish	I
could	acknowledge	them	by	name.

My	thanks	to	Elman	Bashar	for	preparing	the	illustrations.

Portions	of	this	material	were	used	in	an	upper-level	undergraduate	course	on
‘Computational	Thinking’	which	I	have	taught	on	several	occasions	to	non-computer
science	majors.	Their	responses	have	been	most	helpful	in	shaping	and	sharpening	the
text.

Finally,	as	always,	my	thanks	to	members	of	my	family.	In	their	different	ways	each
continues	to	provide	the	sustenance	that	makes	living	the	life	of	the	mind	worthwhile.

List	of	illustrations

1	Abstraction	and	hierarchy	inside	a	computer	system

2	General	structure	of	the	Turing	machine

3	Programming,	related	disciplines,	and	associated	sciences

4	Computer	architectures	and	their	external	constraints

5	Portrait	of	a	computer’s	inner	architecture

6	An	instruction	pipeline

7	Portrait	of	a	multiprocessor

8	General	structure	of	a	heuristic	search	system

Chapter	1
The	‘stuff’	of	computing

What	is	computer	science?	A,	now	classic,	answer	was	offered	in	1967	by	three	eminent
early	contributors	to	the	discipline,	Alan	Perlis,	Allen	Newell,	and	Herbert	Simon,	who
stated,	quite	simply,	that	computer	science	is	the	study	of	computers	and	their	associated
phenomena.

This	is	a	quite	straightforward	response	and	I	think	most	computer	scientists	would	accept
it	as	a	rough	and	ready	working	definition.	It	centres	on	the	computer	itself,	and	certainly
there	would	be	no	computer	science	without	the	computer.	But	both	computer	scientists
and	the	curious	layperson	may	wish	to	understand	more	precisely	the	two	key	terms	in	this
definition:	‘computers’	and	their	‘associated	phenomena’.

An	automaton	called	‘computer’
The	computer	is	an	automaton.	In	the	past	this	word,	coined	in	the	17th	century	(plural,
‘automata’)	meant	any	artefact	which,	largely	driven	by	its	own	source	of	motive	power,
performed	certain	repetitive	patterns	of	movement	and	actions	without	external	influences.
Sometimes,	these	actions	imitated	those	of	humans	and	animals.	Ingenious	mechanical
automata	have	been	devised	since	pre-Christian	antiquity,	largely	for	the	amusement	of	the
wealthy,	but	some	were	of	a	very	practical	nature	as,	for	example,	the	water	clock	said	to
be	invented	in	the	1st	century	CE	by	the	engineer	Hero	of	Alexandria.	The	mechanical
weight-driven	clock	invented	in	15th-century	Italy	is	a	highly	successful	and	lasting
descendant	of	this	type	of	automaton.	In	the	Industrial	Revolution	of	the	18th	century,	the
operation	of	a	pump	to	remove	water	from	mines	motivated	by	the	‘atmospheric’	steam
engine	invented	by	Thomas	Newcomen	(in	1713),	and	later	improved	by	James	Watt	(in
1765)	and	others,	was	another	instance	of	a	practical	automaton.

Thus,	mechanical	automata	that	perform	physical	actions	of	one	sort	or	another	have	a
venerable	pedigree.	Automata	that	mimic	cognitive	actions	are	of	far	more	recent	vintage.
A	notable	example	is	the	‘tortoise’	robot	Machina	Speculatrix	invented	by	British
neurophysiologist	W.	Grey	Walter	in	the	late	1940s	to	early	1950s.	But	the	automatic
electronic	digital	computer,	developed	in	the	second	half	of	the	1940s,	marked	the	birth
process	of	an	entirely	new	genus	of	automata;	for	the	computer	was	an	artefact	designed	to
simulate	and	imitate	certain	kinds	of	human	thought	processes.

The	idea	of	computing	as	a	way	of	imitating	human	thinking—of	the	computer	as	a
‘thinking	machine’—is	a	profoundly	interesting,	disturbing,	and	controversial	notion
which	I	will	address	later	in	the	book,	for	it	is	the	root	of	a	branch	of	computer	science
called	artificial	intelligence	(AI).	But	many	computer	scientists	prefer	to	be	less
anthropocentric	about	their	discipline.	Some	even	deny	that	computing	has	any	similarity
at	all	to	autonomous	human	thinking.	Writing	in	the	1840s,	the	remarkable	English
mathematician	Ada	Augustus,	the	Countess	of	Lovelace,	an	associate	of	Charles	Babbage
(see	Preface)	pointed	out	that	the	machine	Babbage	had	conceived	(called	the	Analytical
Engine,	the	first	incarnation	of	what	a	century	later	became	the	modern	general	purpose
digital	computer),	had	no	‘pretensions’	to	initiating	tasks	on	its	own.	It	could	only	do	what
it	was	ordered	to	do	by	humans.	This	sentiment	is	often	repeated	by	modern	sceptics	of
AI,	such	as	Sir	Maurice	Wilkes,	one	of	the	pioneers	of	the	electronic	computer.	Writing	at
the	end	of	the	20th	century	and	echoing	Lovelace,	he	insisted	that	computers	only	did
what	‘they	had	been	written	to	do’.

So	what	is	it	that	computers	do	which	sets	them	apart	from	every	other	kind	of	artefact,
including	other	sorts	of	automata?	And	what	makes	computer	science	so	distinctive	as	a
scientific	discipline?

For	the	purpose	of	this	chapter,	I	will	treat	the	computer	as	a	‘black	box’.	That	is,	we	will
more	or	less	ignore	the	internal	structure	and	workings	of	computers;	those	will	come
later.	For	the	present	we	will	think	of	the	computer	as	a	generic	kind	of	automaton,	and
consider	only	what	it	does,	not	how	it	does	what	it	does.

Computing	as	information	processing
Every	discipline	that	aspires	to	be	‘scientific’	is	constrained	by	the	fundamental	stuff	it	is
concerned	with.	The	stuff	of	physics	comprises	matter,	force,	energy,	and	motion;	that	of
chemistry	is	atoms	and	molecules;	the	stuff	of	genetics	is	the	gene;	and	that	of	civil
engineering	comprises	the	forces	that	keep	a	physical	structure	in	equilibrium.

A	widely	held	view	amongst	computer	scientists	is	that	the	fundamental	stuff	of	computer
science	is	information.	Thus,	the	computer	is	the	means	by	which	information	is
automatically	retrieved	from	the	‘environment’,	stored,	processed,	or	transformed,	and
released	back	into	the	environment.	This	is	why	an	alternative	term	for	computing	is
information	processing;	why	in	Europe	computer	science	is	called	‘informatique’	or
‘informatik’;	and	why	the	‘United	Nations’	of	computing	is	called	the	International
Federation	for	Information	Processing	(IFIP).

The	problem	is	that	despite	the	founding	of	IFIP	in	1960	(thus	giving	official	international
blessing	to	the	concept	of	information	processing),	there	remains,	to	this	day,	a	great	deal
of	misunderstanding	about	what	information	is.	It	is,	as	Maurice	Wilkes	once	remarked,	an
elusive	thing.

‘Meaningless’	information
One	significant	reason	for	this	is	the	unfortunate	fact	that	the	word	‘information’	was
appropriated	by	communication	engineers	to	mean	something	very	different	from	its
everyday	meaning.	We	usually	think	of	information	as	telling	us	something	about	the
world.	In	ordinary	language,	information	is	meaningful.	The	statement	‘The	average
winter	temperature	in	country	X	is	5	degrees	Celsius’	tells	us	something	about	the	climate
in	country	X;	it	gives	us	information	about	X.	In	contrast,	in	the	branch	of	communication
engineering	called	‘information	theory’,	largely	created	by	American	electrical	engineer
Claude	Shannon	in	1948,	information	is	simply	a	commodity	transmitted	across
communication	channels	such	as	telegraph	wires	and	telephone	lines.	In	information
theory,	information	is	devoid	of	meaning.	The	unit	of	information	in	information	theory	is
called	the	bit	(short	for	‘binary	digit’)	and	a	bit	has	only	two	values,	usually	denoted	as	‘0’
and	‘1’.	However,	in	this	age	of	personal	computers	and	laptops,	people	are	more	familiar
with	the	concept	of	the	byte.	One	byte	consists	of	eight	bits.	Since	each	bit	can	have	one	of
two	values,	a	byte	of	information	can	have	28	(=	256)	possible	values	ranging	from
00000000	to	11111111.	What	bits	(or	bytes)	mean	is	of	no	concern	in	this	sense	of
‘information’.

In	computing,	information	processing	in	this	meaningless	sense	is	certainly	relevant	since
(as	we	will	see)	a	physical	computer,	made	out	of	electronic	circuits,	magnetic	and
electromechanical	devices,	and	the	like	(collectively	dubbed	‘hardware’),	stores,
processes,	and	communicates	information	as	multiples	of	bits	and	bytes.	In	fact,	one	of	the
ways	in	which	the	capacity	and	performance	of	a	computational	artefact	is	specified	is	in
terms	of	bits	and	bytes.	For	example,	I	may	buy	a	laptop	with	6	gigabytes	of	internal
memory	and	500	gigabytes	of	external	memory	(‘hardrive’),	(where	1	gigabyte	=	109
bytes);	or	we	may	speak	of	a	computer	network	transmitting	information	at	the	rate	of	100
megabits/second	(where	1	megabit	=	103	bits).

‘Meaningful’	(or	semantic)	information
But	the	physical	computer	is	(as	we	will	see	in	Chapter	2)	only	one	kind	of	computational
artefact.	Meaningless	information	is	just	one	kind	of	information	the	computer	scientist	is
interested	in.	The	other,	more	significant	(and	arguably	more	interesting),	kind	is
information	that	has	meaning:	semantic	information.	Such	information	connects	to	the
‘real	world’—and	in	this	sense	corresponds	to	the	everyday	use	of	the	word.	For	example,
when	I	access	the	Internet	through	my	personal	computer,	information	processing
certainly	occurs	at	the	physical	or	‘meaningless’	level:	bits	are	transmitted	from	some
remote	computer	(‘server’)	through	the	network	to	my	machine.	But	I	am	seeking
information	that	is	about	something,	say	the	biography	of	a	certain	person.	The	resulting
text	that	I	read	on	my	screen	means	something	to	me.	At	this	level,	the	computational
artefact	I	am	interacting	with	is	a	semantic	information	processing	system.

Such	information	can,	of	course,	be	almost	anything	about	the	physical,	social,	or	cultural
environment,	about	the	past,	about	thoughts	and	ideas	of	other	people	as	expressed	by
them	publicly,	and	even	about	one’s	own	thoughts	if	they	happen	to	be	recorded	or	stored
somewhere.	What	such	meaningful	information	shares	with	meaningless	information,	as
computer	scientist	Paul	Rosenbloom	has	noted,	is	that	it	must	be	expressed	in	some
physical	medium	such	as	electrical	signals,	magnetic	states,	or	marks	on	paper;	and	that	it
resolves	uncertainty.

Is	information	knowledge?
But	consider	an	item	of	semantic	information	such	as	the	biography	of	an	individual.	On
reading	it,	I	can	surely	claim	to	possess	knowledge	about	that	individual.	And	this	points
to	the	second	source	of	confusion	about	the	concept	of	information	in	ordinary	language:
the	conflation	of	information	with	knowledge.

The	poet	T.S.	Eliot	had	no	doubt	about	their	distinction.	In	his	play	The	Rock	(1934)	he
famously	asked:

Where	is	the	wisdom	we	have	lost	in	knowledge?

Where	is	the	knowledge	we	have	lost	in	information?

Eliot	was	clearly	implying	a	hierarchy:	that	wisdom	is	superior	to	knowledge,	and
knowledge	to	information.

Computer	scientists	generally	avoid	talking	about	wisdom	as	being	beyond	the	scope	of
their	purview.	But	they	have	also	remained	somewhat	uneasy	about	distinguishing
knowledge	from	information,	at	least	in	some	contexts.	For	example,	in	AI,	a	subfield	of
computer	science,	a	long-standing	problem	of	interest	has	been	knowledge	representation
—how	to	represent	knowledge	about	the	world	in	computer	memory.	Another	kind	of
problem	they	study	is	how	to	make	inferences	from	a	body	of	knowledge.	The	kinds	of
things	AI	researchers	recognize	as	knowledge	include	facts	(‘All	men	are	mortal’),
theories	(‘Evolution	by	natural	selection’),	laws	(‘Every	action	has	an	equal	and	opposite
reaction’),	beliefs	(‘There	is	a	God’),	rules	(‘Always	come	to	a	dead	stop	at	a	stop	sign’),
and	procedures	(‘how	to	make	seafood	gumbo’),	etc.	But	in	what	way	such	entities
constitute	knowledge	and	not	information	remains	largely	unsaid.	AI	researchers	may	well
claim	that	what	they	do,	in	their	branch	of	computer	science,	is	knowledge	processing
rather	than	information	processing;	but	they	seem	to	fall	shy	of	explaining	why	their
concern	is	knowledge	and	not	information.

In	another	specialty	known	as	‘data	mining’	the	concern	is	‘knowledge	discovery’	from
large	volumes	of	data.	Some	data	mining	researchers	characterize	knowledge	as
‘interesting’	and	‘useful’	patterns	or	regularities	hidden	in	large	databases.	They
distinguish	knowledge	discovery	from	information	retrieval	(another	kind	of	computing
activity)	in	that	the	latter	is	concerned	with	retrieving	‘useful’	information	from	a	database
on	the	basis	of	some	query,	whereas	the	former	identifies	knowledge	that	is	more	than	just
‘useful’	information,	or	more	than	patterns	of	regularity:	such	information	must	be
‘interesting’	in	some	significant	sense	to	become	knowledge.	Like	T.S.	Eliot,	data	mining
researchers	rate	knowledge	as	superior	to	information.	At	any	rate,	knowledge	processing
is	what	data	mining	is	about	rather	than	information	retrieval.

Luciano	Floridi,	a	philosopher	of	computing,	offered	the	following	view	of	the
information/knowledge	nexus.	Information	and	knowledge	bear	a	‘family	resemblance’.
They	are	both	meaningful	entities	but	they	differ	in	that	information	elements	are	isolated
like	bricks	whereas	knowledge	relates	information	elements	to	one	another	so	that	one	can
produce	new	inferences	by	way	of	the	relationships.

To	take	an	example:	suppose,	while	driving,	I	hear	on	my	car	radio	that	physicists	in
Geneva	have	detected	a	fundamental	particle	called	the	Higgs	boson.	This	new	fact	(‘The
Higgs	boson	exists’)	is	certainly	a	piece	of	new	information	for	me.	I	may	even	think	that

I	have	acquired	some	new	knowledge.	But	this	would	be	an	illusion	unless	I	can	connect
this	information	with	other	related	items	of	information	about	fundamental	particles	and
cosmology.	Nor	would	I	be	able	to	judge	the	significance	of	this	information.	Physicists
possess	an	integrated	web	of	facts,	theories,	laws,	etc.,	about	subatomic	particles,	and
about	the	structure	of	the	universe	that	enable	them	to	assimilate	this	new	fact	and	grasp
its	significance	or	consequences.	They	possess	the	knowledge	to	do	this,	while	I	have
merely	acquired	a	new	piece	of	information.

Is	information	data?
In	mentioning	‘data	mining’,	I	have	introduced	another	term	of	great	relevance:	data.	And
here	is	yet	another	source	of	ambiguity	in	our	making	sense	of	the	information	concept,
especially	in	the	computer	science	community.

This	ambiguity,	indeed	confusion,	was	remarked	upon	by	the	computer	scientist	Donald
Knuth	as	far	back	as	1966,	a	time	when	computer	science,	emerging	as	a	scientific
discipline	in	its	own	right,	was	demanding	the	invention	of	new	concepts	and	clarification
of	old	ones.	Knuth	noted	that	in	science	there	appeared	to	be	some	confusion	concerning
the	terms	‘information’	and	‘data’.	When	a	scientist	executes	an	experiment	involving
measurement,	what	is	elicited	might	be	any	one	of	four	entities:	the	‘true’	values	of	that
which	is	measured;	the	values	that	are	actually	obtained—approximations	to	the	true
values;	a	representation	of	the	values;	and	the	concepts	the	scientist	teases	out	by
analysing	the	measurements.	The	word	‘data’,	Knuth	asserted,	most	appropriately	applies
to	the	third	of	these	entities.	For	Knuth,	then,	speaking	as	a	computer	scientist,	data	is	the
representation	of	information	obtained	by	observation	or	measurement	in	some	precise
manner.	So,	in	his	view,	information	precedes	data.	In	practice,	the	relationship	between
information	and	data	is	as	murky	as	that	between	information	and	knowledge.	Here,	I	can
only	cite	a	few	of	the	diverse	views	of	this	relationship.

For	Russell	Ackoff,	a	prominent	systems	and	management	scientist,	data	constitute	the
outcome	of	observations;	they	are	representations	of	objects	and	events.	As	for
information,	Ackoff	imagined	someone	asking	some	questions	of	data	which	is	then
‘processed’	(presumably	by	a	human	being	or	a	machine)	to	afford	answers,	and	this	latter
is	information.	So	according	to	Ackoff,	contra	Knuth,	data	precedes	information.

For	Luciano	Floridi,	data	also	precedes	information	but	in	a	different	sense.	Data	exists,
according	to	Floridi,	only	when	there	is	an	absence	of	uniformity	between	two	states	of	a
system.	As	he	puts	it,	a	datum	(the	infrequently	used	singular	of	‘data’)	exists	whenever
there	are	two	variables,	x	and	y	such	that	x	≠	y.	So,	for	Floridi,	data	is	a	condition	which
itself	has	no	meaning	except	that	it	signifies	the	presence	of	difference.	When	I	am
approaching	a	traffic	light	for	instance,	my	observation	of	a	red	signal	is	a	datum	because
it	could	have	been	otherwise:	yellow	or	green.

Given	this	definition	of	data,	Floridi	then	defines	information	as	one	or	more	data
elements	that	are	structured	according	to	some	rules,	and	are	meaningful.	To	use	the
linguist’s	jargon,	information	is	data	when	it	possesses	both	syntax	and	semantics.	Thus,
my	observation	of	the	red	traffic	signal,	a	datum,	becomes	information	because	the
meaning	of	the	red	light	is	that	‘motorists	must	stop	at	the	traffic	light’.	If	I	did	not
associate	this	action	with	the	red	light,	the	latter	would	remain	only	a	datum.

As	a	final	example,	for	AI	researchers	Jeffrey	Shrager	and	Pat	Langley,	data	do	not	result
from	observation;	rather,	observation	is	data;	more	precisely,	what	is	observed	is
selectively	recorded	to	qualify	as	data.	Information	does	not	figure	in	their	scheme	of
things.

The	programmer’s	point	of	view
These	examples	suffice	to	demonstrate	the	murkiness	of	the	information/data	connection
from	different	perspectives.	But	let	me	return	to	Knuth.	His	definition	of	data	reflects	to	a
large	extent,	I	think,	the	view	of	those	computer	scientists	who	specialize	in	another	aspect
of	computer	science,	namely,	computer	programming—the	techniques	by	which	humans
communicate	a	computational	task	to	the	computer	(a	topic	I	discuss	later	in	this	book).
Even	while	paying	lip	service	to	the	idea	of	computing	as	information	processing,
programmers	and	programming	theorists	do	not	generally	reflect	on	‘information’;	rather,
they	are	more	concerned	with	the	Knuthian	idea	of	data.	More	precisely,	they	concern
themselves	with	data	as	the	fundamental	objects	(‘data	objects’)	upon	which	computations
are	performed;	and,	thus,	they	are	preoccupied	with	the	classification	of	data	objects	(‘data
types’),	the	rules	for	representing	complex	data	objects	(‘data	structures’),	and	the	rules
for	manipulating,	processing,	and	transforming	such	data	objects	to	produce	new	data
objects.	For	such	computer	scientists	it	is	data	that	matters,	not	information,	not
knowledge.	To	be	more	exact,	programmers	take	for	granted	that	there	is	information	‘out
there’	in	the	‘real	world’.	But	the	interesting	question	for	them	is	how	to	represent	real
world	information	in	a	form	that	is	appropriate	not	only	for	automatic	computing	but	also
for	human	understanding.	(Needless	to	say,	other	practitioners,	such	as	historians,
statisticians,	and	experimental	scientists,	do	not	usually	regard	data	in	this	fashion.)

I	will	elaborate	on	this	later	in	the	book.	But	to	give	a	very	simple	example	of	the
programmer’s	view	of	data:	in	a	university	environment	there	will	exist	information	in	the
registrar’s	office	about	its	body	of	enrolled	students:	their	names,	dates	of	birth,	home
addresses,	email	addresses,	names	of	parents	or	guardians,	the	subjects	they	are	majoring
in,	the	courses	taken,	the	grades	obtained,	scholarships	held,	fees	paid,	and	so	on.	The
university	administration	needs	a	system	that	will	organize	this	information	in	a	systematic
fashion	(a	‘database’)	such	that,	perhaps,	information	concerning	any	particular	student
can	be	accurately	and	speedily	retrieved;	new	information	about	existing	or	new	students
can	be	inserted;	the	progress	of	individual	students	can	be	efficiently	tracked;	and	statistics
about	the	student	population	as	a	whole	or	some	subset	can	be	gathered.	The	programmer
given	the	task	of	creating	such	a	system	is	not	concerned	with	the	information	per	se,	but
rather,	given	the	nature	of	the	information,	how	to	identify	the	basic	data	objects
representing	student	information,	construct	data	structures	representing	the	data	objects,
and	build	a	database	so	as	to	facilitate	the	computational	tasks	the	university
administration	demands.

Symbol	structures	as	the	common	denominator
I	started	this	chapter	with	the	proposition	that	the	basic	stuff	of	computing	is	information;
that	the	computer	is	an	automaton	that	processes	information;	and	that	consequently,
computer	science	is	the	study	of	information	processing.

But	we	have	also	seen	that	to	some	computer	scientists	(such	as	AI	researchers)	the
fundamental	stuff	of	computing	is	knowledge	rather	than	information;	and	to	others	(such
as	programmers	and	programming	theorists)	it	is	data	rather	than	information.	We	get	a
sense	of	the	varied	usages	of	these	three	entities	from	the	following	sample	of	terms	found
in	the	computing	literature	(some	of	which	have	already	appeared	in	this	chapter,	others
will	be	found	in	later	ones):

Data	type,	data	object,	data	structure,	database,	data	processing,	data	mining,	big	data…

Information	processing,	information	system,	information	science,	information	structure,	information
organization,	information	technology,	information	storage	and	retrieval,	information	theory…

Knowledge	base,	knowledge	system,	knowledge	representation,	knowledge	structure,	theory	of
knowledge,	declarative	knowledge,	procedural	knowledge,	knowledge	discovery,	knowledge	engineering,
knowledge	level…

Can	we	then	reduce	these	three	entities,	information,	data,	knowledge	to	a	common
denominator?	Indeed	we	can.	Computer	scientist	Paul	Rosenbloom	equated	information
with	symbols,	but	we	can	go	further.	As	far	as	computer	science	is	concerned,	all	these
three	entities	can	be	(and	usually	are)	expressed	by	symbols—or,	rather,	by	systems	of
symbols,	symbol	structures—that	is,	entities	that	‘stand	for’,	represent,	or	denote	other
entities.

Symbols	need	a	medium	in	which	they	are	expressed,	such	as	marks	on	paper.	For
example,	the	text	‘The	Higgs	boson	exists’	is	a	symbol	structure	whose	component
symbols	are	alphabetic	characters	referring	to	sound	units	or	phonemes,	plus	the	‘blank’
symbol;	these	when	strung	together	represents	something	about	the	physical	world.	For
the	physics	layperson,	this	is	an	item	of	information;	for	the	particle	physicist,	this
becomes	a	constituent	of	her	knowledge	system	concerning	fundamental	particles.
However,	the	physicist’s	knowledge	which	allows	her	to	make	sense	of	this	information	is
itself	a	far	more	complex	symbol	structure	stored	in	her	brain	and/or	printed	as	text	in
books	and	articles.	And	Knuth’s	idea	of	data	as	the	representation	of	information	means
that	data	are	also	symbol	structures	representing	other	symbol	structures	denoting
information.	Even	the	‘meaningless’	information	of	information	theory,	the	bits	and	bytes,
are	represented	by	physical	symbols	within	a	computer,	such	as	voltage	levels	or	magnetic
states,	or	on	paper	by	strings	of	0s	and	1s.

So	in	its	most	fundamental	essence,	the	stuff	of	computing	is	symbol	structures.
Computing	is	symbol	processing.	Any	automaton	capable	of	processing	symbol	structures
is	a	computer.	The	‘phenomena’	associated	with	computers	as	Perlis,	Newell,	and	Simon
suggested	are	all	ultimately	reducible	to	symbol	structures	and	their	processing.	Computer
science	is,	ultimately,	the	science	of	automatic	symbol	processing,	an	insight	which	Allen
Newell	and	Herbert	Simon	have	emphasized.	We	may	choose	to	call	such	symbol
structures	information,	data,	or	knowledge	depending	on	the	particular	‘culture’	within
computer	science	to	which	we	belong.

It	is	this	notion—that	computing	is	ultimately	symbol	processing;	that	the	computer	is	a

symbol	processing	automaton;	that	computer	science	is	the	science	of	symbol	processing
—which	sets	computer	science	apart	from	other	disciplines.	As	to	its	strangeness,	this	will
be	explained	in	a	later	chapter.

Chapter	2
Computational	artefacts

We	think	of	the	computer	as	the	centrepiece	of	computing;	thus,	of	computer	science.	And
rightly	so.	But	there	are	caveats	to	be	noted.

First,	what	exactly	constitutes	‘the	computer’	can	be	debated.	Some	tend	to	think	of	it	as
the	physical	object	they	work	with	on	a	daily	basis	(a	laptop	or	their	workplace	desktop).
Others	think	of	the	total	system	at	their	disposal,	including	such	facilities	as	email	service,
word	processing,	accessing	databases,	etc.,	as	‘the	computer’.	Still	others	relate	it	to	an
entirely	mathematical	model	called	the	Turing	machine	(discussed	later	in	this	chapter).

Second,	accepting	that	the	computer	is	a	symbol	processing	automaton,	there	are	also
other	symbol	processing	artefacts	associated	with	the	computer,	but	which	seem	slightly	at
odds	with	our	intuitive	idea	of	‘the	computer’.	Thus,	it	behoves	us	to	be	more	eclectic	in
our	view	of	artefacts	that	participate	in	the	computing	process;	hence	the	term
computational	artefact.	In	this	chapter	we	consider	the	nature	of	computational	artefacts.

In	Chapter	1,	the	computer	appeared	as	(more	or	less)	a	black	box.	All	that	was	said	was
that	it	is	a	symbol	processing	automaton:	it	accepts	symbol	structures	(denoting
information,	data,	or	knowledge	as	the	case	may	be)	as	input	and	produces	(of	its	own
impetus)	symbol	structures	as	output.

When	we	prise	open	this	black	box	we	find	that	it	is	rather	like	a	set	of	nested	boxes:
inside	we	find	one	or	more	smaller	boxes;	opening	one	of	these	inner	boxes	reveals	still
smaller	boxes	nested	within.	And	so	on.	Of	course,	the	degree	of	nesting	of	black	boxes	is
finite;	sooner	or	later	we	reach	the	most	primitive	boxes.

The	natural	and	artificial	worlds	both	manifest	instances	of	this	phenomenon—called
hierarchy.	Many	physical,	biological,	social,	and	technological	systems	are	hierarchical	in
structure.	The	difference	between	natural	hierarchies	(as	in	living	systems)	and	artificial
ones	(as	in	cultural	or	technological	systems)	is	that	scientists	have	to	discover	the	former
and	invent	the	latter.

The	modern	computer	is	a	hierarchically	organized	system	of	computational	artefacts.
Inventing,	understanding,	and	applying	rules	and	principles	of	hierarchy	is,	thus,	a
subdiscipline	of	computer	science.

There	is	a	reason	why	hierarchies	exist	in	both	natural	and	artificial	domains,	and	we	owe
this	insight,	most	notably,	to	the	polymath	scientist	Herbert	Simon.	Hierarchical
organization,	he	stated,	is	a	means	of	managing	the	complexity	of	an	entity.	In	Simon’s

language,	an	entity	is	complex	if	it	is	composed	of	a	number	of	components	that	interact	in
a	non-trivial	(that	is,	non-obvious)	way.	As	we	will	see,	the	computer	manifests	this	kind
of	complexity,	hence	it	too	is	composed	as	a	hierarchical	system.	The	designers	and
implementers	of	computer	systems	are	forced	to	structure	them	according	to	principles
and	rules	of	hierarchy.	Computer	scientists	have	the	responsibility	of	inventing	these	rules
and	principles.

Compositional	hierarchy
In	general,	a	hierarchical	system	consists	of	components	partitioned	across	two	or	more
levels.	The	most	common	principles	of	hierarchy	are	concerned	with	the	relationship	of
components	both	within	and	across	levels.

Figure	1	depicts	what	I	will	call	‘MY-COMPUTER’.	(Physically,	this	may	be	a	desktop,	a
laptop,	a	tablet,	or	even	a	smart	phone.	For	convenience,	I	will	assume	it	is	one	of	the	first
two.)	Suppose	I	use	MY-COMPUTER	only	for	three	kinds	of	tasks:	to	write	texts	(as	I	am
doing	now),	to	send	emails,	and	to	search	the	(World	Wide)	Web	via	the	Internet.	Thus,	I
view	it	as	consisting	of	three	computing	tools	which	I	will	call	TEXT,	MAIL,	and	WEB-
SEARCH	(level	1	of	Figure	1),	respectively.	Each	is	a	symbol	processing	computational
artefact.	Each	is	defined	(for	me	as	the	tool	user)	in	terms	of	certain	capabilities.	For
example,	TEXT	offers	a	user-interface	allowing	me	to	input	a	stream	of	characters,	and
give	commands	to	align	margins,	set	spacing	between	lines,	paginate,	start	a	new
paragraph,	indent,	insert	special	symbols,	add	footnotes	and	endnotes,	italicize	and
boldface,	and	so	on.	It	also	allows	me	to	input	a	stream	of	characters	which,	using	the
commands,	is	set	into	text	which	I	can	save	for	later	use	and	retrieve.

From	my	point	of	view,	TEXT	is	MY-COMPUTER	when	I	am	writing	an	article	or	a	book
(as	at	this	moment),	just	as	MAIL	or	WEB-SEARCH	is	MY-COMPUTER	when	I	am
emailing	or	searching	the	Web,	respectively.	More	precisely,	I	am	afforded	three	different,
alternative	illusions	of	what	MY-COMPUTER	is.	Computer	scientists	refer	to	such
illusionary	artefacts	as	virtual	machines,	and	the	creation,	analysis,	and	understanding	of
such	virtual	machines	is	one	of	the	major	concerns	in	computer	science.	They	constitute
one	of	the	phenomena	surrounding	computers	that	Perlis,	Newell,	and	Simon	alluded	to.

The	term	architecture	is	used	generically	by	computer	scientists	to	mean	the	logical	or
functional	structure	of	computational	artefacts.	(The	term	computer	architecture	has	a
more	specialized	meaning	which	will	be	discussed	later.)	From	my	(or	any	other	user’s)
point	of	view,	the	computing	tool	TEXT	has	a	certain	architecture	which	is	visible	to	me:
it	has	an	interpreter	that	interprets	and	executes	commands;	a	temporary	or	working
memory	whose	content	is	the	text	I	am	composing;	a	permanent	or	long-term	memory
which	holds	all	the	different	texts	as	files	I	have	chosen	to	save;	input	channels	that
transmits	my	character	streams	and	commands	to	the	machine,	and	output	channels	that
allow	the	display	of	texts	on	a	screen	or	as	printed	matter	(‘hardcopy’).	These	components
are	‘functional’:	I	may	not	know	(or	particularly	care)	about	the	actual	media	in	which
these	components	exist.	And	because	they	characterize	all	I	(as	the	user)	need	to	know
about	TEXT	to	be	able	to	use	it,	we	will	call	it	TEXT’s	architecture.

1.	Abstraction	and	hierarchy	inside	a	computer	system.

Likewise,	when	emailing,	the	tool	MAIL	is	MY-COMPUTER:	a	virtual	computational
artefact.	This	too	is	a	symbol	processor.	It	manifests	a	user-interface	that	enables	me	to
specify	one	or	more	recipients	of	a	message;	link	one	or	more	other	symbol	structures
(texts,	pictures)	as	attachments	that	accompany	the	message;	compose	the	message;	and
send	it	to	the	recipient(s).	Its	architecture	resembles	that	of	TEXT	in	that	it	manifests	the
same	kinds	of	components.	It	can	interpret	commands,	has	an	input	channel	enabling
character	streams	to	be	assembled	in	a	working	memory,	a	long-term	memory	to	hold,	as
long	as	I	want,	my	messages,	and	output	channels	for	displaying	the	contents	of	the	email
on	the	screen	and	printing	it	out.	In	addition,	MAIL	has	access	to	other	kinds	of	long-term
memory	which	hold	the	symbol	structures	(texts	and	images)	that	can	be	attached	to	the
message;	however,	one	of	these	long-term	memories	is	private	to	MY-COMPUTER	and
so,	can	only	be	accessed	by	me,	while	the	other	is	public—that	is,	shared	with	users	of

other	computers.

Finally,	there	is	WEB-SEARCH.	Its	architecture	is	similar:	an	interpreter	of	the
commands;	a	shared/public	memory	(the	Web)	whose	contents	(‘web	pages’)	are
accessible;	a	private	working	memory	that	(temporarily)	holds	the	contents	accessed	from
shared	memory;	a	private	long-term	memory	which	can	save	these	contents;	and	input	and
output	channels.

The	hierarchy	shown	in	part	A	of	Figure	1	is	two-levelled.	At	the	upper	level	(0)	is	a
single	computational	artefact,	MY-COMPUTER;	but	the	lower	level	(1)	shows	that	MY-
COMPUTER	is	composed	of	three	independent	tools.	This	lower	level	constitutes	my	tool
box	as	it	were.	This	type	of	hierarchy,	when	an	entity	A	is	composed	of	entities	α,	β,	γ,	…	,
is	ubiquitous	in	complex	systems	of	any	kind,	natural	or	artificial.	It	is	certainly	a
characteristic	of	computational	artefacts.	There	is	no	commonly	accepted	term	for	it,	so	let
us	call	it	compositional	hierarchy.

Abstraction/refinement
As	we	have	noted,	the	three	computing	tools	at	level	1	of	Figure	1	are	similar	in	their
respective	architectures.	Each	comprises	of	shared	and	private	long-term	memories,
private	working	memory,	input	and	output	channel(s),	and	interpreter(s)	of	commands.

But	these	three	computing	tools	must	have	been	implemented	for	them	to	be	actual
working	artefacts:	For	instance,	someone	must	have	designed	and	implemented	a
computational	artefact	which	when	activated	performs	as	TEXT,	hiding	the	details	of	the
mechanisms	by	which	TEXT	was	realized.	Let	us	denote	this	implemented	artefact
TEXT*	(level	2	of	Figure	1);	this	is	a	computer	program,	a	piece	of	software.	The
relationship	between	TEXT	and	TEXT*	is	one	of	abstraction/refinement	(part	B	of	Figure
1):

An	abstraction	of	an	entity	E	is	itself	another	entity	e	that	reveals	only	those	characteristics	of	E	considered
relevant	in	some	context	while	suppressing	other	characteristics	deemed	irrelevant	(in	that	context).	Conversely,
a	refinement	of	an	entity	e	is	itself	another	entity	E	such	that	E	reveals	characteristics	that	were	absent	or
suppressed	in	e.

TEXT	is	an	abstraction	of	TEXT*;	conversely,	TEXT*	is	a	refinement	of	TEXT.	Notice
that	abstraction/refinement	is	also	a	principle	of	hierarchy	in	which	abstraction	is	at	the
upper	level	and	refinement	at	the	lower	level.	Notice	also	that	abstractions	and
refinements	are	context-dependent.	The	same	entity	E	may	be	abstracted	in	different	ways
to	yield	two	or	more	higher	level	entities	e1,	e2,	…	,	eN.	Conversely,	the	same	entity	e
may	be	refined	in	two	more	different	ways	to	yield	different	lower	level	entities	E1,	E2,…,
En.

The	principle	of	abstraction/refinement	as	a	way	of	managing	the	complexity	of
computational	artefacts	has	a	rich	history	from	the	earliest	years	of	computing.	Perhaps
the	person	who	made	the	emerging	computer	science	community	in	the	1960s	most
conscious	about	the	importance	of	this	principle	of	hierarchy	was	Edsger	Dijkstra.	Later
we	will	see	its	particular	importance	in	the	process	of	building	computational	artefacts,	but
for	the	present	it	is	enough	for	the	reader	to	appreciate	how	a	complex	computational
artefact	can	be	understood	in	terms	of	the	abstraction/refinement	principle,	just	as	a
complex	computational	artefact	can	be	understood	in	terms	of	the	compositional
hierarchy.

Hierarchy	by	construction
We	are	no	longer	‘seeing’	MY-COMPUTER	from	my	perspective	as	a	user.	We	are	now	in
the	realm	of	those	who	have	actually	created	MY-COMPUTER:	the	tool	builders	or
artificers.	And	they	are	not,	incidentally,	a	homogenous	lot.

In	particular,	TEXT*,	MAIL*,	and	WEB-SEARCH*	are	computer	programs—software—
which	programmers	(software	developers,	as	they	are	now	preferably	called),	have
constructed	upon	an	infrastructure	which	I	call	here	PLINTH	(part	C	and	level	3	of	Figure
1).	This	particular	infrastructure	also	consists	of	a	collection	of	computing	tools	the
builders	of	TEXT*	et	al.	could	use.	Here,	then,	is	a	third	type	of	hierarchy:	hierarchy	by
construction.

Ever	since	the	earliest	days	of	the	digital	computer,	designers	and	researchers	have	sought
to	protect	the	user,	as	far	as	possible,	from	the	gritty,	and	sometimes	nasty,	realities	of	the
physical	computer,	to	make	the	user’s	life	easier.	The	ambition	has	always	been	to	create	a
smooth,	pleasant	user	interface	that	is	close	to	the	user’s	particular	universe	of	discourse,
and	remains	within	the	user’s	comfort	zone.	A	civil	or	a	mechanical	engineer	wants	to
perform	computations	that	command	the	computer	to	solve	the	equations	of	engineering
mechanics;	a	novelist	wants	his	computer	to	function	as	a	writing	instrument;	the
accountant	desires	to	‘offload’	some	of	her	more	tedious	calculations	to	the	computer;	and
so	on.	In	each	case,	the	relevant	user	desires	an	illusion	that	their	computer	is	tailor-made
for	his	or	her	need.	Much	debate	has	ensued	over	the	years	as	to	whether	such	user	tools
and	infrastructures	should	be	incorporated	into	the	physical	machine	(‘hardwired’)	or
provided	in	more	flexible	fashion	by	way	of	software.	In	general,	the	partitioning	of
infrastructures	and	tools	across	this	divide	has	been	rationalized	by	the	particular	needs	of
the	communities	for	whom	computers	are	developed.

As	we	have	noted,	MY-COMPUTER	offers	such	illusions	to	the	user	whose	sole	concerns
are	typing	text,	sending	and	receiving	emails,	and	searching	the	Web.	MY-C0MPUTER
offers	an	infrastructure	for	the	user	to	write	texts,	compose	and	send	emails,	and	search	for
information	on	the	Web,	just	as	PLINTH	(at	a	lower	level)	offers	such	an	infra-structure
for	the	construction	of	programs	that	function	as	the	user’s	toolkit.

But	even	the	software	developers,	who	created	these	abstractions	by	implementing	the
programs	TEXT*	et	al.,	must	have	their	own	illusions:	they	too	are	users	of	the	computer
though	their	engagement	with	the	computer	is	far	more	intense	than	mine	when	I	am	using
TEXT	or	MAIL.	We	may	call	them	‘application	programmers’	or	‘application	software
developers’,	and	they	too	must	be	shielded	from	some	of	the	realities	of	the	physical
computer.	They	too	need	an	infrastructure	with	which	they	can	work,	upon	which	they	can
create	their	own	virtual	machines.

In	Figure	1,	the	entity	named	PLINTH	is	such	a	foundation.	It	is,	in	fact,	an	abstraction	of
a	collection	of	programs	(a	‘software	system’),	shown	here	as	OPSYS*	(level	4)	which
belongs	to	a	class	of	computational	artefacts	called	operating	systems.

An	operating	system	is	the	great	facilitator;	it	is	the	great	protector;	it	is	the	great
illusionist.	In	its	early	days	of	development,	in	the	1960s,	it	was	called	‘supervisor’	or
‘executive’	and	these	terms	capture	well	what	its	responsibilities	are.	Its	function	is	to
manage	the	resources	of	the	physical	computer	and	provide	a	uniform	set	of	services	to	all

users	of	the	computer	whether	layperson	or	software	developer.	These	services	include
‘loaders’	which	will	accept	programs	to	be	executed	and	allocating	them	to	appropriate
locations	in	memory;	memory	management	(ensuring	that	one	user	program	does	not
encroach	upon,	or	interfere	with,	the	memory	used	by	another	program);	providing	virtual
memory	(giving	users	the	illusion	of	unlimited	memory);	controlling	physical	devices
(such	as	disks,	printers,	monitors)	that	perform	input	and	output	functions;	organizing	the
storage	of	information	(or	data	or	knowledge)	in	long-term	memories	so	as	to	make	it
easily	and	speedily	accessible;	executing	procedures	according	to	standardized	rules
(called	‘protocols’)	that	enable	a	program	on	one	computer	to	request	service	from	a
program	in	another	computer	communicated	through	a	network;	protecting	a	user’s
program	from	being	corrupted	by	another	user’s	program	either	accidentally	or	by	the
latter	user’s	malice.	The	infrastructure	called	PLINTH	in	Figure	1	provides	such	services
—a	set	of	computing	tools;	it	is	an	abstraction	of	the	operating	system	OPSYS*.

Yet,	an	operating	system	is	not	exactly	a	firewall	forbidding	all	interaction	between	a
program	constructed	atop	it	(such	as	MAIL*)	and	the	physical	computer	beneath	it.	After
all,	a	program	will	execute	by	issuing	instructions	or	commands	to	the	physical	computer,
and	most	of	these	instructions	will	be	directly	interpreted	by	the	physical	computer	(in
which	situation,	these	instructions	are	called	‘machine	instructions’).	What	the	operating
system	will	do	is	‘let	through’	machine	instructions	to	the	physical	computers	in	a
controlled	fashion,	and	interpret	other	instructions	itself	(such	as	those	for	input	and
output	tasks).

Which	brings	us	to	(almost)	the	bottom	of	the	hierarchy	depicted	in	Figure	1.	OPSYS*,
the	operating	system	software,	is	shown	here	as	constructed—on	top	of	the	physical
computer	(level	5).	For	the	present	we	will	assume	that	the	physical	computer	(commonly
and	crudely	called	hardware)	is	(finally)	the	‘real	thing’;	that	there	is	nothing	virtual	about
it.	We	will	see	that	this	too	is	an	illusion,	that	the	physical	computer	has	its	own	internal
hierarchy	and	it	too	has	its	own	levels	of	abstraction,	composition,	and	construction.	But	at
least	we	can	complete	the	present	discussion	on	this	note:	that	the	physical	computer
provides	an	infrastructure	and	a	toolbox	comprising	a	repertoire	of	instructions	(machine
instructions),	a	repertoire	of	data	types	(see	Chapter	1),	modes	of	organizing	and	accessing
instructions	and	data	in	memory,	and	certain	other	basic	facilities	which	enable	the
implementation	of	programs	(especially	the	operating	system)	that	can	be	executed	by	the
physical	computer.

Three	classes	of	computational	artefacts
In	a	recent	book	narrating	the	history	of	the	birth	of	computer	science	I	commented	that	a
peculiarity	of	computer	science	lies	in	its	three	classes	of	computational	artefacts.

One	class	is	material.	These	artefacts,	like	all	material	objects	encountered	through
history,	obey	the	physical	laws	of	nature	(such	as	Ohm’s	law,	the	laws	of	thermodynamics,
Newton’s	laws	of	motion,	etc.).	They	consume	power,	generate	heat,	entail	(in	some	cases)
physical	motion,	decay	physically	and	chemically	over	time,	occupy	physical	space,	and
consume	physical	time	when	operational.	In	our	example	of	Figure	1,	the	physical
computer	at	level	5	is	an	instance.	Obviously,	all	kinds	of	computer	hardware	are	material
computational	artefacts.

Some	computational	artefacts,	however,	are	entirely	abstract.	They	not	only	process
symbol	structures,	they	themselves	are	symbol	structures	and	are	intrinsically	devoid	of
any	physicality	(though	they	may	be	made	visible	via	physical	media	such	as	marks	on
paper	or	on	the	computer	screen).	So	physico-chemical	laws	do	not	apply	to	them.	They
neither	occupy	physical	space	nor	do	they	consume	physical	time.	They	‘neither	toil	nor
spin’	in	physical	space-time;	rather,	they	exist	in	their	own	space-time	frame.	There	are	no
instances	of	the	abstract	artefact	in	Figure	1.	In	the	next	section,	I	cite	examples,	and	will
discuss	some	of	them	in	chapters	to	follow.	But	if	you	recall	the	mention	of	procedures
that	I	as	a	user	of	TEXT	or	MAIL	can	devise	to	deploy	these	tools,	such	procedures
exemplify	abstract	artefacts.

The	third	class	of	computational	artefacts	are	the	ones	that	most	lend	strangeness	to
computer	science.	These	are	abstract	and	material.	To	be	more	precise,	they	are
themselves	symbol	structures,	and	in	this	sense	they	are	abstract;	yet	their	operations
cause	changes	in	the	material	world:	signals	transmitted	across	communication	paths,
electromagnetic	waves	to	radiate	in	space,	physical	states	of	devices	to	change,	and	so	on;
moreover,	their	actions	depend	on	an	underlying	material	agent	to	execute	the	actions.
Because	of	this	nature,	I	have	called	this	class	liminal	(meaning	a	state	of	ambiguity,	of
between	and	betwixt).	Computer	programs	or	software	is	one	vast	class	of	liminal
computational	artefacts,	for	example,	the	programs	TEXT*,	MAIL*,	WEB-SEARCH*,
and	the	operating	system	OPSYS*	of	Figure	1.

Later,	we	will	encounter	another	important	kind	of	liminal	artefact.	For	the	present,	what
makes	computer	science	both	distinctive	and	strange	is	not	only	the	presence	of	liminal
artefacts	but	also	that	what	we	call	‘the	computer’	is	a	symbiosis	of	the	material,	the
abstract,	and	the	liminal.

Over	the	approximately	six	decades	during	which	computer	science	as	an	autonomous,
scientific	discipline	evolved,	many	distinct	subclasses	of	these	three	classes	of
computational	artefacts	have	emerged.	Four	instances—user	tool	and	infrastructure,
software,	and	physical	computer—are	shown	in	Figure	1.	Of	course,	some	subclasses	are
more	central	to	computing	than	others	because	they	are	more	universal	in	their	scope	and
use	than	others.	Moreover,	the	classes	and	subclasses	form	a	compositional	hierarchy	of
their	own.

Here	is	a	list	of	some	of	these	classes	and	subclasses	presently	recognized	in	computer
science.	The	numbering	convention	demonstrates	the	hierarchical	relationship	between

them.	While	the	reader	may	not	be	familiar	with	many	of	these	elements,	I	will	explain	the
most	prominent	of	them	in	the	course	of	this	book.
[1]	Abstract	artefacts

[1.1]	Algorithms

[1.2]	Abstract	automata

[1.2.1]	Turing	machines

[1.2.2]	Sequential	machines

[1.3]	Metalanguages

[1.4]	Methodologies

[1.5]	Languages

[1.5.1]	Programming	languages

[1.5.2]	Hardware	description	languages

[1.5.3]	Microprogramming	languages

[2]	Liminal	artefacts

[2.1]	User	tools	and	interfaces

[2.2]	Computer	architectures

[2.2.1]	Uniprocessor	architectures

[2.2.2]	Multiprocessor	architectures

[2.2.3]	Distributed	computer	architectures

[2.3]	Software	(programs)

[2.3.1]	Von	Neumann	style

[2.3.2]	Functional	style

[3]	Material	artefacts

[3.1]	Physical	computers/hardware

[3.2]	Logic	circuits

[3.3]	Communication	networks

The	‘great	unifier’
There	is	one	computational	artefact	that	must	be	singled	out.	This	is	the	Turing	machine,
an	abstract	machine	named	after	its	originator—logician,	mathematician,	and	computer
theorist	Alan	Turing.	Let	me	first	describe	this	artefact	and	then	explain	why	it	deserves
special	attention.

The	Turing	machine	consists	of	a	tape	that	is	unbounded	in	length	and	divided	into
squares.	Each	square	can	hold	one	of	a	vocabulary	of	symbols.	At	any	point	in	time	a
read/write	head	is	positioned	on	one	square	of	the	tape	which	becomes	the	‘current’
square.	The	symbol	in	the	current	square	(including	the	‘empty’	symbol	or	‘blank’)	is	the
‘current	symbol’.	The	machine	can	be	in	one	of	a	finite	number	of	states.	The	state	of	the
machine	at	any	given	time	is	its	‘current	state’.	Depending	on	the	current	symbol	and	the
current	state,	the	read/write	head	can	write	(an	output)	symbol	on	the	current	square
(overwriting	the	current	symbol),	move	one	square	left	or	right,	or	effect	a	change	of	state,
called	the	‘next	state’.	The	cycle	of	operation	repeats	with	the	next	state	as	the	current
state,	the	new	current	square	holding	the	new	current	symbol.	The	relationships	between
the	(possible)	current	states	(CS),	(possible)	current	(input)	symbols	(I),	the	(possible)
output	symbols	(O),	movements	of	the	read/write	head	(RW),	and	the	(possible)	next
states	(NS)	are	specified	by	a	‘state	table’.	The	behaviour	of	the	machine	is	controlled	by
the	state	table	and	the	invisible	mechanism	that	effects	the	reads	and	writes,	moves	the
read/write	head,	and	effects	changes	of	state.

Figure	2	depicts	a	very	simple	Turing	machine	which	reads	an	input	string	of	0s	and	1s
written	on	the	tape,	replaces	the	input	string	with	0s	except	that	when	the	entire	string	has
been	scanned,	it	writes	a	1	if	the	number	of	1s	in	the	input	string	is	odd,	and	0	otherwise.
The	machine	then	comes	to	a	halt.	A	special	symbol,	say	#,	on	the	tape	indicates	the	end
of	the	input	string.	This	machine	would	be	called	a	‘parity	detector’:	it	replaces	the	entire
input	string	with	0s	and	replaces	#	with	a	1	or	a	0	depending	on	whether	the	parity	of	(the
number	of	1s	in)	the	input	string	is	odd	or	even.

This	machine	needs	three	states:	So	signifies	that	an	odd	number	of	1s	have	been	detected
in	the	input	string	at	any	point	in	the	machine’s	operation.	Se	represents	the	detection	of	an
even	number	of	1s	up	to	any	point	in	the	machine’s	operation.	The	third	state	H	is	the
halting	state:	it	causes	the	machine	to	halt.	When	the	machine	begins	operation,	its
read/write	head	is	pointing	to	the	square	holding	the	first	digit	in	the	input	string.

The	potential	behaviour	of	the	Turing	machine	is	specified	by	the	state	table	(see	Table	1).

2.	General	structure	of	the	Turing	machine.

Table	1. 	The	state	table

Each	row	in	this	table	specifies	a	distinct	operation	on	the	part	of	the	machine	and	must	be
interpreted	independently.	For	example,	the	first	row	says	that:	if	the	current	state	is	Se
and	the	current	input	symbol	is	0	then	the	next	state	will	(also)	be	Se	and	output	symbol	0
is	written	on	the	tape	and	the	read/write	head	is	moved	one	position	right.	The	last	row
tells	us	that	that	if	the	current	state	is	So	and	the	input	symbol	is	#	then	replace	the	#	with	a
1	and	make	the	next	state	the	halt	state	H.	There	is	no	further	motion	of	the	read/write
head.

Suppose	the	input	string	is	as	shown	in	Figure	2,	and	the	machine	is	set	to	the	state	Se.	The
reader	can	easily	verify	that	the	sequence	of	states	and	the	contents	of	the	tape	in
successive	cycles	of	the	machine’s	operation	will	be	as	follows.	The	position	of	the
read/write	head	in	each	cycle	is	indicated	by	the	asterisk	to	the	right	of	the	‘current’	input
symbol:

Se:	1*011011#	➔	So:	00*11011#	➔	So:	001*1011#	➔	Se:	0001*011#	➔

So:	00000*11#	➔	So:	000001*1#	➔	Se:	0000001*#	➔	So:	0000000#*	➔

H:	00000001*

There	will	be,	then,	a	distinct	Turing	machine	(Turing	himself	called	this,	simply,	a

‘computing	machine’)	for	each	distinct	symbol	processing	task.	Each	such	(special
purpose)	Turing	machine	will	specify	the	alphabet	of	symbols	that	the	machine	will
recognize,	the	set	of	possible	states,	the	initial	square	on	which	the	read/write	head	is
positioned,	the	state	table,	and	the	initial	current	state.	At	the	end	of	the	machine’s
operation	(when	it	reaches	the	‘halt’	state,	if	there	is	one)	the	output	written	onto	the	tape
gives	the	result	of	the	symbol	processing	task.

Thus,	for	example,	a	Turing	machine	can	be	built	to	add	two	numbers	n,	m,	represented	by
n	1s	followed	by	a	blank	followed	by	m	1s,	leaving	the	result	n	+	m	(as	a	string	of	n	+	m
1s)	on	the	tape.	Another	Turing	machine	with	a	single	string	composed	of	the	symbols	a,
b,	and	c	as	input	will	replace	this	input	string	with	a	‘mirror	image’	(called	a	‘palindrome’)
of	the	input	string.	For	example	if	the	input	string	is	‘aaabbbccc’	then	the	output	will	be
‘cccbbbaaa’.	A	Turing	machine	is,	thus,	a	symbol	processing	machine.	It	is,	of	course,	an
abstract	artefact	in	the	‘purest’	sense	since	the	machine	itself	is	a	symbol	structure.	No	one
would	dream	of	making	a	physical	version	of	a	Turing	machine	as	a	practical	artefact.

But	Turing	went	further.	He	also	showed	that	one	can	build	a	single	computing	machine	U
that	can	simulate	every	other	Turing	machine.	If	U	is	provided	with	a	tape	containing	the
description	of	the	state	table	for	a	specific	Turing	machine,	U	will	interpret	that
description	and	perform	the	same	task	as	that	particular	machine	would	do.	Such	a
machine	U	is	called	a	universal	Turing	machine.

The	significance	of	Turing’s	invention	lies	in	a	claim	he	made	that	any	procedure	that	we
‘intuitively’	or	‘naturally’	think	of	as	a	computing	procedure	can	be	realized	by	a	Turing
machine.	It	follows	that	a	universal	Turing	machine	can	perform	anything	we	think	of	as
computing.	This	claim	is	called	the	Turing	thesis	(or	sometimes	as	the	Church–Turing
thesis,	since	another	logician,	Alonzo	Church,	arrived	at	the	same	conclusion	using	an
entirely	different	line	of	thinking).

We	may	think	of	the	Turing	machine	as	the	‘great	unifier’.	It	is	what	binds	all
computational	artefacts;	that	is,	all	computational	artefacts	and	their	behaviours	can	be
reduced	to	the	workings	of	a	Turing	machine.

Having	said	this,	and	also	recognizing	that	an	entire	branch	of	computer	science	called
automata	theory	exists	which	studies	the	structure	and	behaviour,	the	power	and
limitations	of	the	Turing	machine	in	all	its	conceivable	manifestations	(e.g.	in	confining
the	tape	to	a	finite	length,	or	in	introducing	multiple	tapes	with	multiple	read/write	heads),
we	must	also	recognize	the	paradoxical	situation	that	the	Turing	machine	has	had	almost
no	impact	on	the	invention,	design,	implementation,	and	behaviour	of	any	practical	(or
practicable)	computational	artefact	whatsoever,	or	on	the	thinking	and	practice	of
computer	scientists	who	deal	with	such	artefacts!

Interactive	computing
Moreover,	since	Turing’s	time	there	have	emerged	computational	artefacts	that	work
interactively	with	each	other	or	with	other	natural	or	artificial	systems.	‘Interaction’	refers
here	to	the	mutual	or	reciprocal	influence	amongst	artificial	(including	social)	and/or
natural	agents	that	together	form	a	system	of	some	sort.

Consider,	for	example,	my	paying	a	utilities	bill:	this	entails	an	interaction	between	me
and	my	laptop,	and	my	bank’s	computer	system	and	that	of	the	utility	company.	In	this
situation	four	agents	(three	computational	artefacts	and	myself)	are	effecting	information
transfers	and	computations	interactively,	by	exchanging	messages,	commands,	and	data.

Or	consider	the	abstract	computational	artefact	TEXT	in	Figure	1.	This	constitutes	a
human–computer	interface	whereby	the	human	user	of	TEXT	and	the	software	system
TEXT*	interact	with	each	other.	Commands	afforded	by	TEXT	and	issued	by	the	user
causes	TEXT*	to	respond	(initiating	a	new	line	of	text,	creating	a	space	between	words,
adding	characters	to	form	words	in	the	text,	indenting	for	a	new	paragraph,	italicizing	a
word,	etc.)	and	this	latter	response	prompts,	in	turn,	the	human	user	to	respond.

Such	interactive	systems	do	not	conform	to	the	‘standard’	idea	of	the	Turing	machine
which	is	essentially	a	stand-alone	artefact	with	inputs	already	inscribed	on	its	tape	before
the	activation	of	the	machine	and	whose	output	is	only	visible	when	the	Turing	machine
halts.	Interactive	computational	artefacts	(such	as	my	bank’s	or	my	utility	company’s
system)	may	never	halt.

It	is	because	of	such	considerations	that	some	computer	scientists	insist	that	the	study	of
Turing	machines—automata	theory—properly	belongs	to	the	realm	of	mathematics	and
mathematical	logic	than	to	computer	science	proper,	while	others	question	the	validity	of
seeing	the	Turing	thesis	as	encompassing	the	whole	of	computing.

Computer	science	as	a	science	of	the	artificial
To	summarize	the	discussion	so	far,	computational	artefacts	are	made	things;	they	process
symbol	structures	signifying	information,	data,	or	knowledge	(depending	on	one’s	point	of
view	and	context).	Computer	science	is	the	science	of	computational	artefacts.

Clearly,	computational	artefacts	are	not	part	of	the	natural	world	in	the	sense	that	rocks,
minerals	and	fossils,	plants	and	animals,	stars,	galaxies	and	black	holes,	elementary
particles,	atoms	and	molecules	are.	Human	beings	bring	these	artefacts	into	existence.
Thus,	computer	science	is	not	a	natural	science.	So	what	kind	of	science	is	it?

One	view	is	that	since	computational	artefacts	are	utilitarian,	thus	technological,	computer
science	is	not	‘really’	a	science	at	all.	Rather,	it	is	a	branch	of	engineering.	However,	the
traditional	engineering	sciences	such	as	strength	of	materials,	theory	of	structures,
thermodynamics,	physical	metallurgy,	circuit	theory,	as	well	as	such	new	engineering
sciences	as	bioengineering	and	genetic	engineering	are	directly	constrained	by	the	laws	of
nature.	Liminal	and	abstract	computational	artefacts	seem	a	far	cry	from	the
uncompromisingly	material	artefacts—structures,	machine	tools,	engines,	integrated
circuits,	metals,	alloys,	and	composite	materials,	etc.—studied	by	engineering	scientists.
This	is	one	of	the	reasons	why	material	computational	artefacts	(computer	hardware)	often
belong	to	the	domain	of	engineering	schools	while	liminal	and	abstract	ones	are	in	the
domain	of	schools	of	science.

However,	all	artefacts—engineering	and	computational—have	something	in	common:
they	are	the	products	of	human	thought,	human	goals,	human	needs,	human	desires.
Artefacts	are	purposive:	they	reflect	the	goals	of	their	creators.

Herbert	Simon	called	all	the	sciences	concerned	with	artefacts	(abstract,	liminal,	or
material)	the	sciences	of	the	artificial.	They	stand	apart	from	the	natural	sciences	because
they	must	take	into	account	goals	and	purposes.	A	natural	object	has	no	purpose:	rocks
and	minerals,	stars	and	galaxies,	atoms	and	molecules,	plants	and	organisms	have	not
come	into	the	world	with	a	purpose.	They	just	are.	The	astronomer	does	not	ask:	‘What	is
a	galaxy	for?’	The	geologist	does	not	ask:	‘What	is	the	purpose	of	an	igneous	intrusion?’
The	task	of	the	natural	scientist	is	to	discover	the	laws	governing	the	structures	and
behaviours	of	natural	phenomena,	inquire	into	how	they	came	into	being,	but	not	ask	why
—for	what	purpose—they	came	into	existence.

In	contrast,	artefacts	have	entered	the	world	reflecting	human	needs	and	goals.	It	is	not
enough	to	ask	what	are	the	laws	and	principles	governing	the	structure	and	behaviour	of	a
computational	artefact	(or,	for	that	matter,	of	pyramids,	suspension	bridges,	particle
accelerators,	and	kitchen	knives)	if	we	then	ignore	the	reason	for	their	existence.

The	sciences	of	the	artificial	entail	the	study	of	the	relationship	between	means	and	ends:
the	goals	or	needs	for	which	an	artefact	is	intended,	and	the	artefact	made	to	satisfy	the
needs.	The	‘science’	in	computer	science	is,	thus,	a	science	of	means	and	ends.	It	asks:
given	a	human	need,	goal,	or	purpose,	how	can	a	computational	artefact	demonstrably
achieve	such	a	purpose?	That	is,	how	can	one	demonstrate,	by	reason	or	observation	or
experiment	that	the	computational	artefact	satisfies	that	purpose?

Chapter	3
Algorithmic	thinking

Like	the	character	in	Molière’s	play	who	did	not	know	he	had	been	speaking	prose	all	his
life,	most	people	may	not	realize	that,	when	as	children	they	first	multiplied	two	multi-
digit	numbers	or	did	long	division,	they	were	executing	an	algorithm.	Indeed,	it	is
probably	the	case	that	before	the	1960s	few	people	outside	the	computing	and
mathematical	communities	knew	the	word	‘algorithm’.	Since	then,	however,	like
‘paradigm’	(a	term	originally	made	fashionable	in	the	rarified	reaches	of	philosophy	of
science)	‘algorithm’	has	found	its	way	into	common	language	to	mean	formulas,	rules,
recipes,	or	systematic	procedures	to	solve	problems.	This	is	largely	due	to	the	intimate
association,	in	the	past	five	decades	or	so,	of	computing	with	algorithms.

Yet,	the	concept	of	an	algorithm	(if	not	the	word)	reaches	back	to	antiquity.	Euclid’s	great
work,	Elements	(c.300	BCE)	where	the	principles	of	plane	geometry	were	laid	out,
described	an	algorithm	to	find	the	greatest	common	divisor	(GCD)	of	two	positive
integers.	The	word	‘algorithm’	itself	originated	in	the	name	of	9th-century	Arabic
mathematician	and	astronomer,	Mohammed	ibn-Musa	al-Khwarizmi,	who	lived	and
worked	in	one	of	the	world’s	premier	scientific	centres	of	his	age,	the	House	of	Wisdom	in
Baghdad.	In	one	of	his	many	treatises	on	mathematics	and	astronomy,	al-Khwarizmi	wrote
on	the	‘Hindu	art	of	reckoning’.	Mistaking	this	work	as	al-Khwarizmi’s	own,	later	readers
of	Latin	translations	called	his	work	‘algorismi’	which	eventually	became	‘algorism’	to
mean	a	step-by-step	procedure.	This	metamorphosed	into	‘algorithm’.	The	earliest
reference	the	Oxford	English	Dictionary	could	find	for	this	word	is	in	an	article	published
in	an	English	scientific	periodical	in	1695.

Donald	Knuth	(who	perhaps	more	than	any	other	person	made	algorithms	part	of	the
computer	scientist’s	consciousness)	once	described	computer	science	as	the	study	of
algorithms.	Not	all	computer	scientists	would	agree	with	this	‘totalizing’	sentiment,	but
none	could	conceive	of	a	computer	science	without	algorithms	at	its	epicentre.	Much	like
the	Darwinian	theory	of	evolution	in	biology,	all	roads	in	computing	seem	to	lead	to
algorithms.	If	to	think	biologically	is	to	think	evolutionarily,	to	think	computationally	is	to
form	the	habit	of	algorithmic	thinking.

The	litmus	test
As	an	entry	into	this	realm,	consider	the	litmus	test,	which	is	one	of	the	first	experiments	a
student	performs	in	high	school	chemistry.

There	is	a	liquid	of	some	unknown	sort	in	a	test	tube	or	beaker.	The	experimenter	dips	a
strip	of	blue	litmus	paper	into	it.	It	turns	red,	therefore	the	liquid	is	acidic;	it	remains	blue,
it	is	not	acidic.	In	the	latter	case	the	experimenter	dips	a	red	litmus	strip	into	the	liquid.	It
turns	blue,	therefore	the	liquid	is	alkaline	(basic),	otherwise	it	is	neutral.

This	is	a	decision	procedure	chemistry	students	learn	very	early	in	their	chemical
education,	which	we	can	describe	in	the	following	fashion:

if	a	blue	litmus	strip	turns	red	when	dipped	into	a	liquid

then	conclude	the	liquid	is	acidic

else

if	a	red	litmus	strip	turns	blue	when	dipped	in	the	liquid

then	conclude	the	liquid	is	alkaline

else	conclude	the	liquid	is	neutral

The	notation	used	here	will	appear	throughout	this	chapter	and	in	some	of	the	chapters	that
follow,	and	needs	to	be	explained.	In	general,	the	notation	if	C	then	S1	else	S2,	is	used	in
algorithmic	thinking	to	specify	decision	making	of	a	certain	sort.	If	the	condition	C	is	true
then	the	flow	of	control	in	the	algorithm	goes	to	the	segment	S1,	and	S1	will	then
‘execute’.	If	C	is	false	then	control	goes	to	S2,	and	S2	will	then	execute.	In	either	case,
after	the	execution	of	the	if	then	else	statement	control	goes	to	the	statement	that	follows
it	in	the	algorithm.

Notice	that	the	experimenter	does	not	need	to	know	anything	about	why	the	litmus	test
works	the	way	it	does.	She	does	not	need	to	know	what	‘litmus’	actually	is—its	chemical
composition—nor	what	chemical	process	occurs	causing	the	change	of	colour.	To	carry
out	the	procedure	it	is	entirely	sufficient	that	(a)	the	experimenter	recognizes	litmus	paper
when	she	sees	it;	and	(b)	she	can	associate	the	changes	of	colour	with	acids	and	bases.

The	term	‘litmus	test’	has	become	a	metaphor	for	a	definitive	condition	or	test.	And	for
good	reasons:	it	is	guaranteed	to	work.	There	will	be	an	unequivocal	outcome;	there	is	no
room	for	uncertainty.	Moreover,	the	litmus	test	cannot	go	on	indefinitely;	the	experimenter
is	assured	that	within	a	finite	amount	of	time	the	test	will	give	a	decision.

These	conjoined	properties	of	the	litmus	test—a	mechanical	procedure	which	is
guaranteed	to	produce	a	correct	result	in	a	finite	amount	of	time—are	essential	elements
characterizing	an	algorithm.

When	is	a	procedure	an	algorithm?
For	computer	scientists,	an	algorithm	is	not	just	a	mechanical	procedure	or	a	recipe.	In
order	for	a	procedure	to	qualify	as	an	algorithm	as	computer	scientists	understand	this
concept,	it	must	possess	the	following	attributes	(as	first	enunciated	by	Donald	Knuth):

Finiteness.	An	algorithm	always	terminates	(that	is,	comes	to	a	halt)	after	a	finite	number	of	steps.

Definiteness.	Every	step	of	an	algorithm	must	be	precisely	and	unambiguously	specified.

Effectiveness.	Each	operation	performed	as	part	of	an	algorithm	must	be	primitive	enough	for	a	human	being	to
perform	it	exactly	(using,	say,	pencil	and	paper).

Input	and	output.	An	algorithm	must	have	one	or	more	inputs	and	one	or	more	outputs.

Let	us	consider	Euclid’s	venerable	algorithm	mentioned	earlier	to	find	the	GCD	of	two
positive	integers	m	and	n	(that	is,	the	largest	positive	integer	that	divides	exactly	into	m
and	n).	The	algorithm	is	described	here	in	a	language	that	combines	ordinary	English,
elementary	mathematical	notation,	and	some	symbols	used	to	signify	decisions	(as	in	the
litmus	test	example).	In	the	algorithm,	m	and	n	serve	as	‘input	variables’	and	n	also	serves
as	an	‘output	variable’.	In	addition,	a	third	‘temporary	variable’,	denoted	as	r	is	required.
A	‘comment’,	which	is	not	part	of	the	algorithm	itself	is	enclosed	in	‘{	}’.	The	‘←’	symbol
in	the	algorithm	is	of	special	interest:	it	signifies	the	‘assignment	operation’:	‘b	←	a’
means	to	copy	or	assign	the	value	of	the	variable	a	into	b.

Suppose	initially	m	=	16,	n	=	12.	If	a	person	‘executes’	this	algorithm	using	pencil	and
paper,	then	the	values	of	the	three	variables	m,	n,	r	after	each	step’s	execution	will	be	as
follows.

As	another	example,	suppose	initially	m	=	17,	n	=	14.	The	values	of	the	three	variables
after	each	step’s	execution	will	be	the	following:

In	the	first	example,	GCD	(16,	12)	=	4,	which	is	the	algorithm’s	output	when	it	halts;	in
the	second	example	GCD	(17,	14)	=	1,	which	the	algorithm	outputs	after	it	terminates.

Clearly,	the	algorithm	has	inputs.	Much	less	obvious	is	whether	the	algorithm	satisfies	the
finiteness	criterion.	There	is	a	repetition	or	iteration	indicated	by	the	goto	command
which	causes	control	to	return	to	step	1.	As	the	two	examples	indicate,	the	algorithm
iterates	between	steps	1	and	3	until	the	condition	r	=	0	is	satisfied	whereupon	the	value	of
n	is	output	as	the	result	and	the	algorithm	comes	to	a	halt.	The	two	examples	indicate
clearly	that	for	these	particular	pairs	of	input	values	for	m	and	n,	the	algorithm	always
ultimately	satisfies	the	termination	criterion	(r	=	0)	and	will	halt.	However,	how	do	we
know	whether	for	other	pairs	of	values	it	will	not	iterate	forever	alternating	steps	1	and	3

and	never	produces	an	output?	(Thus,	in	that	situation,	the	algorithm	will	violate	both	the
finiteness	and	output	criteria.)	How	do	we	know	that	the	algorithm	will	always	terminate
for	all	possible	positive	values	of	m	and	n?
The	answer	is	that	it	must	be	demonstrated	that	in	general,	the	algorithm	is	finite.	This
demonstration	lies	in	that	after	every	test	of	r	=	0	in	step	2,	the	value	of	r	is	less	than	the
positive	integer	n,	and	the	values	of	n	and	r	decreases	with	every	execution	of	step	1.	A
decreasing	sequence	of	positive	integers	must	eventually	reach	0	and	so	eventually	r	=	0,
and	so	by	virtue	of	step	2	the	procedure	will	eventually	terminate.

What	about	the	definiteness	criterion?	What	this	says	is	that	every	step	of	an	algorithm
must	be	precisely	defined.	The	actions	to	be	carried	out	must	be	unambiguously	specified.
Thus	language	enters	the	picture.	The	description	of	Euclid’s	algorithm	uses	a	mix	of
English	and	vaguely	mathematical	notation.	The	person	who	mentally	executes	this
algorithm	(with	the	aid	of	pencil	and	paper)	is	supposed	to	understand	exactly	what	it
means	to	divide,	what	a	remainder	is,	what	positive	integers	are.	He	must	understand	the
meaning	of	the	more	formal	notation,	such	as	the	symbols	‘if	…	then	…	else’,	‘goto’.

As	for	effectiveness,	all	the	operations	to	be	performed	must	be	primitive	enough	that	they
can	be	done	in	a	finite	length	of	time.	In	this	particular	case	the	operations	specified	are
basic	enough	that	one	can	carry	them	out	on	paper	as	was	done	earlier.

‘Go	forth	and	multiply’
The	concept	of	abstraction	applies	to	the	specification	of	algorithms.	In	other	words,	a
particular	problem	may	be	solved	by	algorithms	specified	at	two	or	more	different	levels
of	abstraction.

Before	the	advent	of	pocket	calculators	children	were	taught	to	multiply	using	pencil	and
paper.	The	following	is	what	I	was	taught	as	a	child.	For	simplicity,	assume	a	three-digit
number	(the	‘multiplicand’)	is	being	multiplied	by	a	two-digit	number	(the	‘multiplier’).

Step	1:	Place	the	numbers	so	that	the	multiplicand	is	the	top	row	and	the	multiplier	is	the	row	below	and
position	them	so	that	the	units	digit	of	the	multiplier	is	aligned	exactly	below	the	units	digit	of	the	multiplicand.

Step	2:	Draw	a	horizontal	line	below	the	multiplier.

Step	3:	Multiply	the	multiplicand	by	the	units	digit	of	the	multiplier	and	write	the	result	(‘partial	product’)
below	the	horizontal	line,	positioning	it	so	that	the	units	digits	are	all	aligned.

Step	4:	Place	a	‘0’	below	the	units	digit	of	the	partial	product	obtained	in	step	3.

Step	5:	Multiply	the	multiplicand	with	the	tens	digit	of	the	multiplier	and	position	the	result	(partial	product)	on
the	second	row	below	the	horizontal	line	to	the	left	of	the	‘0’.

Step	6:	Draw	another	horizontal	line	below	the	second	partial	product.

Step	7:	Add	the	two	partial	products	and	write	it	below	the	second	horizontal	line.

Step	8:	Stop.	The	number	below	the	second	line	is	the	desired	result.

Notice	that	to	perform	this	procedure	successfully	the	child	has	to	have	some	prior
knowledge:	(a)	She	must	know	how	to	multiply	a	multi-digit	number	by	a	one-digit
number.	This	entails	either	memorizing	the	multiplication	table	for	two	one-digit
multiplications	or	having	access	to	the	table.	(b)	She	must	know	how	to	add	two	or	more
one-digit	numbers;	and	she	must	know	how	to	handle	carries.	(c)	She	must	know	how	to
add	two	multi-digit	numbers.

However,	the	child	does	not	need	to	know	or	understand	why	the	two	numbers	are	aligned
according	to	step	1;	or	why	the	second	partial	product	is	shifted	one	position	to	the	left	as
per	step	5;	or	why	a	‘0’	is	inserted	in	step	4;	or	why	when	she	added	the	two	partial
products	in	step	7	the	correct	result	obtains.

Notice,	though,	the	preciseness	of	the	steps.	As	long	as	someone	follows	the	steps	exactly
as	stated	this	procedure	is	guaranteed	to	work	provided	conditions	(a)	and	(b)	mentioned
earlier	are	met	by	the	person	executing	the	procedure.	It	is	guaranteed	to	produce	a	correct
result	in	a	finite	amount	of	time:	the	fundamental	characteristics	of	an	algorithm.

Consider	how	most	of	us	nowadays	would	do	this	multiplication.	We	will	summon	our
pocket	calculator	(or	smart	phone),	and	we	will	proceed	to	use	the	calculator	as	follows:

Step	1’:	Enter	the	multiplicand.

Step	2’:	Press	‘x’.

Step	3’:	Enter	the	multiplier.

Step	4’:	Press	‘=’.

Step	5’:	Stop.	The	result	is	what	is	displayed.

This	is	also	a	multiplication	algorithm.	The	two	algorithms	achieve	the	same	result	but
they	are	at	two	different	levels	of	abstraction.	Exactly	what	happens	in	executing	steps	1’–
4’	in	the	second	algorithm	the	user	does	not	know.	It	is	quite	possible	that	the	calculator	is

implementing	the	same	algorithm	as	the	paper	and	pencil	version.	It	is	equally	possible
that	a	different	implementation	is	used.	This	information	is	hidden	from	the	user.
The	levels	of	abstraction	in	this	example	also	imply	levels	of	ignorance.	The	child	using
the	paper-and-pencil	algorithm	knows	more	about	multiplication	than	the	person	using	a
pocket	calculator.

The	determinacy	of	algorithms
An	algorithm	has	the	comforting	property	that	its	performance	does	not	depend	on	the
performer,	as	long	as	the	knowledge	conditions	(a)–(c)	mentioned	earlier	are	satisfied	by
the	performer.	For	the	same	input	to	an	algorithm	the	same	output	will	obtain	regardless	of
who	(or	what)	is	executing	the	algorithm.	Moreover,	an	algorithm	will	always	produce	the
same	result	regardless	of	when	it	is	executed.	Collectively,	these	two	attributes	imply	that
algorithms	are	determinate.

Which	is	why	cookbook	recipes	are	usually	not	algorithms:	oftentimes	they	include	steps
that	are	ambiguous,	thus	undermining	the	definiteness	criterion.	For	example,	they	may
include	instructions	to	add	ingredients	that	have	been	‘mashed	lightly’	or	‘finely	grated’	or
an	injunction	to	‘cook	slowly’.	These	instructions	are	too	ambiguous	to	satisfy	the
conditions	of	algorithm-hood.	Rather,	it	is	left	to	the	cook’s	intuition,	experience,	and
judgement	to	interpret	such	instructions.	This	is	why	the	same	dish	prepared	from	the
same	recipe	by	two	different	cooks	may	differ	in	taste;	or	why	the	same	recipe	followed
by	the	same	person	on	two	different	occasions	may	differ	in	taste.	Recipes	violate	the
principle	of	determinacy.

Algorithms	are	abstract	artefacts
An	algorithm	is	undoubtedly	an	artefact;	it	is	designed	or	invented	by	human	beings	in
response	to	goals	or	needs.	And	insofar	as	they	process	symbol	structures	(as	in	the	cases
of	the	GCD	and	multiplication	algorithms)	they	are	computational.	(Not	all	algorithms
process	symbol	structures:	the	litmus	test	takes	physical	entities—a	test	tube	of	liquid,	a
litmus	strip—as	inputs	and	produces	a	physical	state—the	colour	of	the	litmus	strip—as
output.	The	litmus	test	is	a	manual	algorithm	that	operates	upon	physico-chemical	entities,
not	symbol	structures;	we	should	not,	then,	think	of	it	as	a	computational	artefact.)

But	algorithms,	whether	computational	or	not,	themselves	have	no	physical	existence.	One
can	neither	touch	nor	hold	them,	feel	them,	taste	them,	or	hear	them.	They	obey	neither
the	laws	of	physics	and	chemistry	nor	the	laws	of	engineering	sciences.	They	are	abstract
artefacts.	They	are	made	of	symbol	structures	which,	like	all	symbol	structures,	represent
other	things	in	the	world	which	themselves	may	be	physical	(litmus	paper,	chemicals,
buttons	on	a	pocket	calculator,	etc.)	or	abstract	(integers,	operations	on	integers,	relations
such	as	equality,	etc.).

An	algorithm	is	a	tool.	And	as	in	the	case	of	most	tools,	the	less	the	user	needs	to	know	its
theoretical	underpinnings	the	more	effective	an	algorithm	is	for	the	user.

This	raises	the	following	point:	as	an	artefact	an	algorithm	is	Janus-faced.	(Janus	was	the
Roman	god	of	gates	who	looked	simultaneously	in	two	opposite	directions.)	Its	design	or
invention	generally	demands	creativity,	but	its	use	is	a	purely	mechanical	act	demanding
little	creative	thought.	Executing	an	algorithm	is,	so	to	speak,	a	form	of	mindless	thinking.

Algorithms	are	procedural	knowledge
As	artefacts,	algorithms	are	tools	users	deploy	to	solve	problems.	Once	created	and	made
public	they	belong	to	the	world.	This	is	what	makes	algorithms	objective	(as	well	as
determinate)	artefacts.	But	algorithms	are	also	embodiments	of	knowledge.	And	being
objective	artefacts	they	are	embodiments	of	what	philosopher	of	science	Karl	Popper
called	‘objective	knowledge’.	(It	may	sound	paradoxical	to	say	that	the	user	of	an
algorithm	is	both	a	‘mindless	thinker’	yet	a	‘knowing	subject’;	but	even	thinking
mindlessly	is	still	thinking,	and	thinking	entails	drawing	upon	knowledge	of	some	sort.)
But	what	kind	of	knowledge	does	the	algorithm	represent?

In	the	natural	sciences	we	learn	definitions,	facts,	theories,	laws,	etc.	Here	are	some
examples	from	elementary	physics	and	chemistry.
(i)	The	velocity	of	light	in	a	vacuum	is	186,000	miles	per	second.

(ii)	Acceleration	is	the	rate	of	change	of	velocity.

(iii)	The	atomic	weight	of	hydrogen	is	1.

(iv)	There	are	four	states	of	matter,	solid,	liquid,	gas,	and	plasma.

(v)	When	the	chemical	elements	are	arranged	in	order	of	atomic	numbers	there	is	a	periodic	(recurring)	pattern	of	the
properties	of	the	elements.

(vi)	Combustion	requires	the	presence	of	oxygen.

In	each	case	something	is	declared	to	be	the	case:	that	combustion	requires	the	presence	of
oxygen;	that	the	atomic	weight	of	hydrogen	is	1;	that	acceleration	is	the	rate	of	change	of
velocity;	and	so	on.	The	(approximation	to)	truth	of	these	statements	is	either	by	way	of
definition	(ii);	calculation	(i);	experimentation	or	observation	(iv,	vi);	or	reasoning	(v).
Strictly	speaking,	taken	in	isolation,	they	are	items	of	information	which	when	assimilated
become	part	of	a	person’s	knowledge	(see	Chapter	1).	This	kind	of	knowledge	is	called
declarative	knowledge	or,	more	colloquially,	‘know-that’	knowledge.

Mathematics	also	has	declarative	knowledge,	in	the	form	of	definitions,	axioms,	or
theorems.	For	example,	a	fundamental	axiom	of	arithmetic,	due	to	the	Italian
mathematician	Giuseppe	Peano	is	the	principle	of	mathematical	induction:

Any	property	belonging	to	zero,	and	also	to	the	immediate	successor	of	every	number	that	has	that	property,
belongs	to	all	numbers.

Pythagoras’s	theorem,	in	contrast,	is	a	piece	of	declarative	knowledge	in	plane	geometry
by	way	of	reasoning	(by	proof):

In	a	right-angled	triangle	with	sides	a,	b	forming	the	right	angle	and	c	the	hypotenuse,	the	relationship	
is	true.

Here	is	an	example	of	declarative	mathematical	knowledge	by	definition:

The	factorial	of	a	non-negative	integer	n	is:

In	contrast,	an	algorithm	is	not	declarative;	rather	it	constitutes	a	procedure,	describing
how	to	do	something.	It	prescribes	action	of	some	sort.	Accordingly,	an	algorithm	is	an
instance	of	procedural	knowledge	or,	colloquially,	‘know-how’.

For	a	computer	scientist	it	is	not	enough	to	know	that	the	factorial	of	a	number	is	defined

as	such	and	such.	She	wants	to	know	how	to	compute	the	factorial	of	a	number.	She	wants
an	algorithm,	in	other	words.	For	example:

FACTORIAL

Input:	n	≥	0;

Temp	variable:	fact;

Step	1:	fact	➔	1;

Step	2:	if	n	≠	0	and	n	≠	1	then

repeat

Step	3:	fact	➔	fact	*	n;

Step	4:	n	=	n	–	1;

Step	5:	until	n	=	1;

Step	6:	output	fact;

Step	7:	halt

The	notation	repeat	S	until	C	specifies	an	iteration	or	loop.	The	statement(s)	S	will
iteratively	execute	until	the	condition	C	is	true.	When	this	happens,	the	loop	terminates
and	control	flows	to	the	statement	following	the	iteration.

Here,	in	step	1,	fact	is	assigned	the	value	1.	If	n	=	0	or	1,	then	the	condition	in	step	2	is	not
satisfied,	in	which	case	control	goes	directly	to	step	6	and	the	value	of	fact	=	1	is	output
and	the	algorithm	halts	in	step	7.	On	the	other	hand	if	n	is	neither	1	nor	0	then	the	loop
indicated	by	the	repeat	…	until	segment	is	iteratively	executed,	each	time	decrementing	n
by	1	until	the	loop	termination	condition	n	=	1	is	satisfied.	Control	then	goes	to	step	6
which	when	executed	outputs	the	value	of	fact	as	 .

Notice	that	the	same	concept—‘factorial’—can	be	presented	both	declaratively	(as
mathematicians	would	prefer)	and	procedurally	(as	computer	scientists	would	desire).	In
fact	the	declarative	form	provides	the	underlying	‘theory’	(‘what	is	a	factorial?’)	for	the
procedural	form,	the	algorithm	(‘how	do	we	compute	it?’).

In	summary,	algorithms	constitute	a	form	of	procedural	but	objective	knowledge.

Designing	algorithms
The	abstractness	of	algorithms	has	a	curious	consequence	when	we	consider	the	design	of
algorithms.	This	is	because,	in	general,	design	is	a	goal-oriented	(purposive)	act	which
begins	with	a	set	of	requirements	R	to	be	met	by	an	artefact	A	yet	to	exist,	and	ends	with	a
symbol	structure	that	represents	the	desired	artefact.	In	the	usual	case	this	symbol
structure	is	the	design	D(A)	of	the	artefact	A.	And	the	designer’s	goal	is	to	create	D(A)
such	that	if	A	is	implemented	according	to	D(A)	then	A	will	satisfy	R.

This	scenario	is	unproblematic	when	the	artefact	A	is	a	material	one;	the	design	of	a
bridge,	for	example,	will	be	a	representation	of	the	structure	of	the	bridge	in	the	form	of
engineering	drawings	and	a	body	of	calculations	and	diagrams	showing	the	forces
operating	on	the	structure.	In	the	case	of	algorithms	as	artefacts,	however,	the	artefact
itself	is	a	symbol	structure.	Thus,	to	speak	of	the	design	of	an	algorithm	is	to	speak	of	a
symbol	structure	(the	design)	representing	another	symbol	structure	(the	algorithm).	This
is	somewhat	perplexing.

So	in	the	case	of	algorithms	it	is	more	sensible	and	rational	to	think	of	the	design	and	the
artefact	as	the	same.	The	task	of	designing	an	algorithm	is	that	of	creating	a	symbol
structure	which	is	the	algorithm	A	such	that	A	satisfies	the	requirements	R.

The	operative	word	here	is	‘creating’.	Designing	is	a	creative	act	and,	as	creativity
researchers	have	shown,	the	creative	act	is	a	complicated	blend	of	reason,	logic,	intuition,
knowledge,	judgement,	guile,	and	serendipity.	And	yet	design	theorists	do	talk	about	a
‘science	of	design’	or	a	‘logic	of	design’.

Is	there,	then	a	scientific	component	to	the	design	of	algorithms?	The	answer	is:	‘up	to	a
point’.	There	are	essentially	three	ways	in	which	a	‘scientific	approach’	enters	into	the
design	of	algorithms.

To	begin	with,	a	design	problem	does	not	exist	in	a	vacuum.	It	is	contextualized	by	a	body
of	knowledge	(call	it	a	‘knowledge	space’)	relevant	to	the	problem	and	possessed	by	the
designer.	In	designing	a	new	algorithm	this	knowledge	space	becomes	relevant.	For
instance,	a	similarity	between	the	problem	at	hand	and	the	problem	solved	by	an	existing
algorithm	(which	is	part	of	the	knowledge	space)	may	be	discovered;	thus	the	technique
applied	in	the	latter	may	be	transferred	to	the	present	problem.	This	is	a	case	of	analogical
reasoning.	Or	a	known	design	strategy	may	seem	especially	appropriate	to	the	problem	at
hand,	so	this	strategy	may	be	attempted,	though	with	no	guarantee	of	its	success.	This	is	a
case	of	heuristic	reasoning.	Or	there	may	exist	a	formal	theory	relevant	to	the	domain	to
which	the	problem	belongs;	thus	the	theory	may	be	brought	to	bear	on	the	problem.	This	is
a	case	of	theoretical	reasoning.

In	other	words,	forms	of	reasoning	may	be	brought	to	bear	in	designing	an	algorithm
based	on	a	body	of	established	or	well-tried	or	proven	knowledge	(both	declarative	and
procedural).	Let	us	call	this	the	knowledge	factor	in	algorithm	design.

But,	just	to	come	up	with	an	algorithm	is	not	enough.	There	is	also	the	obligation	to
convince	oneself	and	others	that	the	algorithm	is	valid.	This	entails	demonstrating	by
systematic	reasoning	that	the	algorithm	satisfies	the	original	requirements.	I	will	call	this
the	validity	factor	in	algorithm	design.

Finally,	even	if	it	is	shown	that	the	algorithm	is	valid	this	may	not	be	enough.	There	is	the
question	about	its	performance:	how	good	is	the	algorithm?	Let	us	call	this	the
performance	factor	in	algorithm	design.

These	three	‘factors’	all	entail	the	kinds	of	reasoning,	logic,	and	rules	of	evidence	we
normally	associate	with	science.	Let	us	see	by	way	of	some	examples	how	they	contribute
to	the	science	of	algorithm	design.

The	problem	of	translating	arithmetic	expressions
There	is	a	class	of	computer	programs	called	compilers	whose	job	is	to	translate	a	program
written	in	a	‘high	level’	programming	language	(that	is,	a	language	that	abstracts	from	the
features	of	actual	physical	computers;	for	example,	Fortran	or	C++)	into	a	sequence	of
instructions	that	can	be	directly	executed	(interpreted)	by	a	specific	physical	computer.
Such	a	sequence	of	machine-specific	instructions	is	called	‘machine	code’.	(Programming
languages	are	discussed	in	Chapter	4.)

A	classical	problem	faced	by	the	earliest	compiler	writers	(in	the	late	1950s	and	1960s)
was	to	develop	algorithms	to	translate	arithmetic	expressions	that	appear	in	the	program
into	machine	code.	An	example	of	such	an	expression	is

Here,	+,	−,	*,	and	/	are	the	four	arithmetic	operators;	variables	a,	b,	c,	d	and	the	constant
number	1	are	called	‘operands’.	An	expression	of	this	form,	in	which	the	arithmetic
operators	appear	between	its	two	operands	is	called	an	‘infix	expression’.

The	knowledge	space	surrounding	this	problem	(and	possessed	by	the	algorithm	designer)
includes	the	following	rules	of	precedence	of	the	arithmetic	operators:
1.	In	the	absence	of	parentheses,	*,	/	have	precedence	over	+,	−.

2.	*,	/	have	the	same	precedence;	+,	−	have	the	same	precedence.

3.	If	operators	of	the	same	precedence	appear	in	an	expression,	then	left-to-right	precedence	applies.	That	is,	operators
are	applied	to	operands	in	order	of	their	left-to-right	occurrence.

4.	Expressions	within	parentheses	have	the	highest	precedence.

Thus,	for	example	in	the	case	of	the	expression	given	earlier,	the	order	of	operators	will
be:
a.	Perform	a	+	b.	Call	the	result	t1.

b.	Perform	1/d.	Call	the	result	t2.

c.	Perform	c	–	t2.	Call	the	result	t3.

d.	Perform	t1	*	t3.

On	the	other	hand	if	the	expression	was	parenthesis-free:

then	the	order	of	operators	would	be:
i.	Perform	b	*	c.	Call	the	result	t1’.

ii.	Perform	1/d.	Call	the	result	t2’.

iii.	Perform	a	+	t1’.	Call	the	result	t3’.

iv.	Perform	t3’	–	t2’.

An	algorithm	can	be	designed	to	produce	machine	code	which	when	executed	will
correctly	evaluate	infix	arithmetic	expressions	according	to	the	precedence	rules.	(The
precise	nature	of	the	algorithm	will	depend	on	the	nature	of	the	machine-dependent
instructions,	an	idiosyncracy	of	the	specific	physical	computer.)	Thus	the	algorithm,	based
on	the	precedence	rules,	draws	on	precise	rules	that	are	part	of	the	knowledge	space
relevant	to	the	problem.	Moreover,	because	the	algorithm	is	based	directly	on	the
precedence	rules,	arguing	for	the	algorithm’s	validity	will	be	greatly	facilitated.	However,

as	the	earlier	examples	show,	parentheses	make	the	translation	of	an	infix	expression
somewhat	more	complicated.
There	is	a	notation	for	specifying	arithmetic	expressions	without	the	need	for	parentheses,
invented	by	the	Polish	logician	Jan	Lukasiewiz	(1878–1956)	and	known,	consequently,	as
‘Polish	notation’.	In	one	form	of	this	notation,	called	‘reverse	Polish’,	the	operator
immediately	follows	its	two	operands	in	a	reverse	Polish	expression.	The	following
examples	show	the	reverse	Polish	form	for	a	few	infix	expressions.
a.	For	a	+	b	the	reverse	Polish	is	a	b	+.

b.	For	a	+	b	−	c	the	reverse	Polish	is	a	b	+	c	−.

c.	For	a	+	b	*	c	the	reverse	Polish	is	a	b	c	*	+.

d.	For	(a	+	b)*	c	the	reverse	Polish	is	a	b	+	c	*.

The	evaluation	of	a	reverse	Polish	expression	proceeds	left-to-right	in	a	straightforward
fashion,	thus	making	the	translation	problem	easier.	The	rule	is	that	the	arithmetic
operators	encountered	are	applied	to	their	preceding	operands	in	the	order	of	the
appearance	of	the	operators,	left-to-right.	For	example,	in	the	case	of	the	infix	expression

the	reverse	Polish	form	is

and	the	order	of	evaluation	is:
i.	Perform	a	b	+	and	call	the	result	t1.	So	the	resulting	expression	is	t1	c	1	d/	−	*.

ii.	Perform	1	d/and	call	the	result	t2.	So	the	resulting	expression	is	t1	c	t2	−	*.

iii.	Perform	c	t2	−	and	call	the	result	t3.	So	the	resulting	expression	is	t1	t3	*.

iv.	Perform	t1	t3	*.

Of	course,	programmers	will	write	arithmetic	expressions	in	the	familiar	infix	form.	The
compiler	will	implement	an	algorithm	that	will	first	translate	infix	expressions	into	reverse
Polish	form	and	then	generate	machine	code	from	the	reverse	Polish	expressions.

The	problem	of	converting	infix	expressions	to	reverse	Polish	form	illustrates	how	a	sound
theoretical	basis	and	a	proven	design	strategy	can	combine	in	designing	an	algorithm	that
is	provably	correct.

The	design	strategy	is	called	recursion,	and	is	a	special	case	of	a	broader	problem	solving
strategy	known	as	‘divide-and-rule’.	In	the	latter,	given	a	problem	P,	if	it	can	be
partitioned	into	smaller	subproblems	p1,	p2,	…	,	pn,	then	solve	p1,	p2,	…	,	pn
independently	and	then	combine	the	solutions	to	the	subproblems	to	obtain	a	solution	for
P.

In	recursion,	the	problem	P	is	divided	into	a	number	of	subproblems	that	are	of	the	same
type	as	P	but	smaller.	Each	subproblem	is	divided	into	still	smaller	subproblems	of	the
same	type	and	so	on	until	the	subproblems	become	small	and	simple	enough	to	be	solved
directly.	The	solutions	of	the	subproblems	are	then	combined	to	give	solutions	to	the
‘parent’	subproblems,	and	these	combined	to	form	solutions	to	their	parents	until	a
solution	to	the	original	problem	P	obtains.

Consider	now	the	problem	of	converting	algorithmically	infix	expressions	into	reverse

Polish	expressions.	Its	basis	is	a	set	of	formal	rules:

Let	B	=	{+,	−,	*,	/}	be	the	set	of	binary	arithmetic	operators	(that	is,	each	operator	b	in	B
has	exactly	two	operands).	Let	a	denote	an	operand.	For	an	infix	expression	I	denote	by	I’
its	reverse	Polish	form.	Then:
(a)	If	I	is	a	single	operand	a	the	reverse	Polish	form	is	a.

(b)	If	I1	b	I2	is	an	infix	expression	where	b	is	an	element	of	B,	then	the	corresponding	reverse	Polish	expression	is	I1’	I2’
b.

(c)	If	(I)	is	an	infix	expression	its	reverse	Polish	form	is	I’.

The	recursive	algorithm	constructed	directly	from	these	rules	is	shown	later	as	a	function
—in	the	mathematical	sense	of	this	term.	In	mathematics,	a	function	F	applied	to	an
‘argument’	x,	denoted	Fx	or	F(x),	returns	the	value	of	the	function	for	x.	For	example,	the
trigonmetric	function	SIN	applied	to	the	argument	90	(degrees),	denoted	as	SIN	90,
returns	the	value	1.	The	square	root	function	symbolized	as	√	applied	to	an	argument,	say
4	(symbolized	as	√4),	returns	the	value	2.

Accordingly,	the	algorithm,	named	here	RP	with	an	infix	expression	I	as	argument	is	as
follows.

RP	(I)

Step	1:	if	I	=	a	then	return	a

else

Step	2:																						if	I	=	I1	b	I2

then	return	RP	(I1)	RP	(I2)	b

else

Step	3:																																									if	I	=	(I1)	then	return	RP	(I1)

Step	4:	halt

Step	3,	of	the	general	form	if	C	then	S	is	a	special	case	of	the	if	then	else	decision	form:
control	flows	to	S	only	if	condition	C	is	true,	otherwise	control	flows	to	the	statement	that
follows	the	if	then.

The	function	RP	can	thus	activate	itself	recursively	with	‘smaller’	arguments.	It	is	easily
seen	that	RP	is	a	direct	implementation	of	the	conversion	rules	and	so,	is	correct	by
construction.	(Of	course,	not	all	algorithms	are	so	self-evidently	correct;	their	theoretical
foundation	may	be	much	more	complex	and	their	correctness	must	then	be	demonstrated
by	careful	argument	or	even	some	form	of	mathematical	proof;	or	their	theoretical	basis
may	be	weak	or	even	non-existent.)

To	illustrate	how	the	algorithm	works	with	actual	arguments,	consider	the	following
examples.

The	‘goodness’	of	algorithms	as	utilitarian	artefacts
As	mentioned	before,	it	is	not	enough	to	design	a	correct	algorithm.	Like	the	designer	of
any	utilitarian	artefact	the	algorithm	designer	must	be	concerned	with	how	good	the
algorithm	is,	how	efficiently	it	does	its	job.	Can	we	measure	the	goodness	of	an	algorithm
in	this	sense?	Can	we	compare	two	rival	algorithms	for	the	same	task	in	some	quantitative
fashion?

The	obvious	factor	of	goodness	will	be	the	amount	of	time	the	algorithm	takes	to	execute.
But	an	algorithm	is	an	abstract	artefact.	We	cannot	measure	it	in	physical	time;	we	cannot
measure	time	on	a	real	clock	since	an	algorithm	qua	algorithm	does	not	involve	any
material	thing.	If	I	as	a	human	being	execute	an	algorithm	I	suppose	I	could	measure	the
amount	of	time	I	take	to	perform	the	algorithm	mentally	(perhaps	with	the	aid	of	pencil
and	paper).	But	that	is	only	a	measure	of	my	performance	of	the	algorithm	on	a	specific	set
of	input	data.	Our	concern	is	to	measure	the	performance	of	an	algorithm	across	all	its
possible	inputs	and	regardless	of	who	is	executing	the	algorithm.

Algorithm	designers,	instead,	assume	that	each	basic	step	of	the	algorithm	takes	the	same
unit	of	time.	Think	of	this	as	‘abstract	time’.	And	they	conceive	the	size	of	a	problem	for
which	the	algorithm	is	designed	in	terms	of	the	number	of	data	items	that	the	problem	is
concerned	with.	They	then	adopt	two	measures	of	algorithmic	‘goodness’.	One	has	to	do
with	the	worst	case	performance	of	the	algorithm	as	a	function	of	the	size	n	of	the
problem;	the	other	measure	deals	with	its	average	performance,	again,	as	a	function	of	the
problem	size	n.	Collectively,	they	are	called	time	complexity.	(An	alternative	measure	is
the	space	complexity:	the	amount	of	(abstract)	memory	space	required	to	execute	the
algorithm.)

The	average	time	complexity	is	the	more	realistic	goodness	measure,	but	it	demands	the
use	of	probabilities	and	is,	thus,	more	difficult	to	analyse.	In	this	discussion	we	will	deal
only	with	the	worst	case	scenario.

Consider	the	following	problem.	I	have	a	list	of	n	items.	Each	item	consists	of	a	student
name	and	his/her	email	address.	The	list	is	ordered	alphabetically	by	name.	My	problem	is
to	search	the	list	and	find	the	email	address	for	a	particular	given	name.

The	simplest	way	to	do	this	is	to	start	at	the	beginning	of	the	list,	compare	each	name	part
of	each	item	with	the	given	student	name,	proceed	along	the	list	one	by	one	until	a	match
is	found,	and	then	output	the	corresponding	email	address.	(For	simplicity,	we	will	assume
that	the	student’s	given	name	is	somewhere	in	the	list.)	We	call	this	the	‘linear	search
algorithm’.

LINEAR	SEARCH

Input:	student:	an	array	of	n	entries,	each	entry	consisting	of	two	‘fields’,	denoting	name	(a	character	string)
and	email	(a	character	string)	respectively.	For	the	i-th	entry	in	student,	denote	the	respective	fields	by	student
[i].name	and	student[i].email.

Input:	given-name:	the	name	being	‘looked	up’.

Temp	variable	i:	an	integer

Step	1:	i	←	1;

Step	2:	while	given-name	≠	student[i].name

Step	3:									do	i	←	I	+	1;

Step	4:	output	student[i].email

Step	5:	halt

Here,	the	generic	notation	while	C	do	S	specifies	another	form	of	iteration:	while	the
condition	C	is	true	repeatedly	execute	the	statement	(‘loop	body’)	S.	In	contrast	to	the
repeat	S	until	C,	the	loop	condition	is	tested	before	the	loop	body	is	entered	on	each
iteration.

In	the	worst	possible	case	the	desired	answer	appears	in	the	very	last	(n-th)	entry.	So,	in
the	worst	case	scenario,	the	while	loop	will	be	iterated	n	times.	In	this	problem	n,	the
number	of	students	in	the	list,	is	the	critical	factor:	this	is	the	problem	size.

Suppose	each	step	takes	roughly	the	same	amount	of	time.	In	the	worst	case,	this
algorithm	needs	2n	+	3	time	steps	to	find	a	match.	Suppose	n	is	very	large	(say	20,000).	In
that	case,	the	additional	factor	‘3’	is	negligible	and	can	be	ignored.	The	multiplicative
factor	‘2’	though	doubling	n	is	a	constant	factor.	What	dominates	is	n,	the	problem	size;	it
is	this	that	might	vary	from	one	student	list	to	another.	We	are	interested,	then,	in	saying
something	about	the	goodness	of	the	algorithm	in	terms	of	the	amount	of	(abstract)	time
needed	to	perform	the	algorithm	as	a	function	of	this	n.

If	an	algorithm	processes	a	problem	of	size	n	in	time	kn,	where	k	is	a	constant,	we	say	that
the	time	complexity	is	of	order	n,	denoted	as	O(n).	This	called	the	Big	O	notation,
introduced	by	a	German	mathematician	P.	Bachmann	in	1892.	This	notation	gives	us	a
way	of	specifying	the	efficiency	(complexity)	of	an	algorithm	as	a	function	of	the	problem
size.	In	the	case	of	the	linear	search	algorithm,	its	worst	case	complexity	in	O(n).	If	an
algorithm	solves	a	problem	in	the	worst	case	in	time	kn2,	its	worst	case	time	complexity	is
O(n2).	If	an	algorithm	takes	time	knlogn	its	time	complexity	is	O(nlogn),	and	so	on.

Clearly,	then,	for	the	same	problem	of	size	n	an	O(logn)	algorithm	will	need	less	time	than
an	O(n)	algorithm,	which	will	need	less	time	than	an	O(nlogn)	algorithm,	and	the	latter
will	need	less	time	than	an	O(n2)	algorithm;	the	latter	will	be	better	than	an	O(n3)
algorithm.	The	worst	algorithms	are	those	whose	time	complexity	is	an	exponential
function	of	n,	such	as	an	O(2n)	algorithm.	The	differences	in	the	goodness	of	algorithms
with	these	kinds	of	time	complexities,	were	starkly	illustrated	by	computer	scientists
Alfred	Aho,	John	Hopcroft,	and	Jeffrey	Ullman	in	their	influential	text	The	Design	and
Analysis	of	Algorithms	(1974).	They	showed	that,	assuming	a	certain	amount	of	physical
time	to	perform	steps	of	an	algorithm,	in	1	minute	an	O(n)	algorithm	could	solve	problems
of	size	n	=	6	*	104;	an	O(nlogn)	algorithm	for	the	same	problem	could	solve	problems	of
size	n	=	4,893;	an	O(n3)	algorithm	solves	the	same	problem	but	only	of	size	n	=	39;	and
an	exponential	algorithm	of	O(2n)	could	only	solve	the	problem	of	size	n	=	15.

Algorithms	can	thus	be	placed	in	a	hierarchy	based	on	their	Big	O	time	complexity,	with
an	O(k)	algorithm	(where	k	is	a	constant)	highest	in	the	hierarchy	and	exponential
algorithms	of	O(kn)	lowest.	Their	goodness	drops	markedly	as	one	proceeds	down	the
hierarchy.

Consider	the	student	list	search	problem,	but	this	time	taking	into	account	the	fact	that	the
entries	in	the	list	are	alphabetically	ordered	by	student	name.	In	this	one	can	do	what	we
approximately	do	when	searching	a	phone	book	or	consulting	a	dictionary.	When	we	look
up	a	directory	we	don’t	start	from	page	one	and	look	up	each	name	one	at	a	time.	Instead,

supposing	the	word	whose	meaning	we	seek	in	a	dictionary	begins	with	a	K.	We	flip	the
pages	of	the	dictionary	to	one	that	is	roughly	near	the	Ks.	If	we	open	the	dictionary	to	the
Ms,	for	example,	we	know	we	have	to	flip	back;	if	we	open	at	the	Hs	we	have	to	flip
forward.	Taking	advantage	of	the	alphabetic	ordering	we	reduce	the	amount	of	search.
This	approach	can	be	followed	more	exactly	by	way	of	an	algorithm	called	binary	search.
Assuming	the	list	has	k	=	2n	−	1	entries,	in	each	step	the	middle	entry	is	identified.	If	the
student	name	so	identified	is	alphabetically	‘lower’	than	the	given	name,	the	algorithm
will	ignore	the	entries	to	the	left	of	the	middle	element.	It	will	then	identify	the	middle
entry	of	the	right	half	of	the	list	and	again	compare.	Each	time,	if	the	name	is	not	found,	it
will	halve	the	list	again	and	continue	until	a	match	is	found.

Suppose	that	the	list	has	k	=	15	(i.e.	24	−	1)	entries.	And	suppose	these	are	numbered	1
through	15.	Then	it	can	easily	be	confirmed	that	the	maximum	paths	the	algorithm	will
travel	will	be	one	of	the	following:

8	➔	4	➔2	➔1

8	➔	4	➔	2	➔	3

8	➔	4	➔	6	➔	5

8	➔	4	−➔	6	➔	7

8	➔	12	➔	10	➔	9

8	➔	12	➔	10	➔	11

8	➔	12	➔	14	➔	13

8	➔	12	➔	14	➔	15

Here,	the	list	entry	8	is	the	middle	entry.	So,	at	most	only	4	=	log216	entries	will	be
searched	before	a	match	is	found.	For	a	list	of	size	n	the	worst	case	performance	of	binary
search	is	O	(log	n),	an	improvement	over	the	linear	search	algorithm.

The	aesthetics	of	algorithms
The	aesthetic	experience—the	quest	for	beauty—is	found	not	only	in	art,	music,	film,	and
literature	but	also	in	science,	mathematics,	and	even	technology.	‘Beauty	is	truth,	truth
beauty’,	began	the	final	lines	of	John	Keats’s	Ode	on	a	Grecian	Urn	(1820).	The	English
mathematician	G.H.	Hardy,	echoing	Keats,	roundly	rejected	the	very	idea	of	‘ugly
mathematics’.

Consider	why	mathematicians	seek	different	proofs	for	some	particular	theorem.	Once
someone	has	discovered	a	proof	for	a	theorem	why	should	one	bother	to	find	another,
different,	proof?	The	answer	is	that	mathematicians	seek	new	proofs	of	theorems	when	the
existing	ones	are	aesthetically	unappealing.	They	seek	beauty	in	their	mathematics.

This	applies	just	as	much	to	the	design	of	algorithms.	A	given	problem	may	be	solved	by
an	algorithm	which	is,	in	some	way,	ugly—that	is,	clumsy,	or	plodding.	Sometimes	this	is
manifested	in	the	algorithm	being	inefficient.	So	computer	scientists,	especially	those	who
have	a	training	in	mathematics,	seek	beauty	in	algorithms	in	exactly	the	same	sense	that
mathematicians	seek	beauty	in	their	proofs.	Perhaps	the	most	eloquent	spokespersons	for
an	aesthetics	of	algorithms	were	the	computer	scientists	Edsger	Dijkstra	from	the
Netherlands,	C.A.R.	Hoare	from	Britain,	and	Donald	Knuth	from	the	United	States.	As
Dijkstra	once	put	it,	‘Beauty	is	our	business’.

This	aesthetic	desire	may	be	satisfied	by	seeking	algorithms	being	simpler,	more	well
structured,	or	using	a	‘deep’	concept.

Consider,	for	example,	the	factorial	algorithm	described	earlier	in	this	chapter.	This
iterative	algorithm	was	based	on	the	definition	of	the	factorial	function	as:

But	there	is	a	recursive	definition	of	the	factorial	function:

The	corresponding	algorithm,	as	a	function,	is:

Many	computer	scientists	would	find	this	a	more	aesthetically	appealing	algorithm
because	of	its	clean,	easily	understandable,	austere	form	and	the	fact	that	it	takes
advantage	of	the	more	subtle	recursive	definition	of	the	factorial	function.	Notice	that	the
recursive	and	the	non-recursive	(iterative)	algorithms	are	at	different	levels	of	abstraction:
the	recursive	version	might	be	implemented	by	some	variant	of	the	non-recursive	version.

Intractable	(‘really	difficult’)	problems
I	end	this	chapter	by	shifting	focus	from	algorithms	that	solve	computational	problems	to
the	computational	problems	themselves.	In	an	earlier	section	we	saw	that	the	performance
of	algorithms	can	be	estimated	in	terms	of	their	time	(or	space)	complexity.	For	example,
in	the	case	of	the	student	list	search	problem	the	two	algorithms	(linear	search	and	binary
search),	though	solving	the	same	problem	manifested	two	different	worst	case	time
complexities.

But	consider	the	so-called	‘travelling	salesman	problem’:	Given	a	set	of	cities	and	road
distances	between	them,	can	a	salesman	beginning	at	his	base	city	visit	all	the	cities	and
return	to	his	origin	such	that	the	total	distance	travelled	is	less	than	or	equal	to	some
particular	value?	As	it	happens,	there	is	no	known	algorithm	for	this	problem	that	is	less
than	of	exponential	time	complexity	(O(kn),	for	some	constant	k	and	problem	size	n	(such
as	the	number	of	cities)).

A	computational	problem	is	said	to	be	intractable—‘really	difficult’—if	all	the	known
algorithms	to	solve	the	problem	are	of	at	least	exponential	time	complexity.	Problems	for
which	there	exist	algorithms	of	polynomial	time	complexity	(e.g.	O(nk))	are	said	to	be
tractable—that	is,	‘practically	feasible’.

The	branch	of	computer	science	that	deals	with	the	in/tractability	of	computational
problems	is	a	formal,	mathematical	domain	called	the	theory	of	computational	complexity,
founded	in	the	1960s	and	early	1970s	predominantly	by	the	Israeli	Michael	Rabin,	the
Canadian	Stephen	Cook,	and	the	Americans	Juris	Hartmanis,	Richard	Stearns,	and
Richard	Karp.

Complexity	theorists	distinguish	between	two	problem	classes	called	P	and	NP,
respectively.	The	formal	(that	is,	mathematical)	definitions	of	these	classes	are	formidable,
related	to	automata	theory	and,	in	particular,	certain	kinds	of	Turing	machines	(see
Chapter	2),	and	they	need	not	detain	us	here.	Informally,	the	class	P	consists	of	all
problems	solvable	in	polynomial	time—and	these	are,	thus	tractable.	Informally,	the	class
NP	consists	of	problems	for	which	a	proposed	solution,	which	may	or	may	not	be
obtained	in	polynomial	time,	can	be	checked	to	be	true	in	polynomial	time.	For	example,
the	travelling	salesman	problem	does	not	have	a	(known)	polynomial	time	algorithmic
solution	but	given	a	solution	it	can	be	‘easily’	checked	in	polynomial	time	whether	the
solution	is	correct.

But,	as	noted,	the	travelling	salesman	problem	is	intractable.	Thus,	the	NP	class	may
contain	problems	believed	to	be	intractable—although	NP	also	contains	the	P	class	of
tractable	problems.

The	implications	of	these	ideas	are	considerable.	Of	particular	interest	is	a	concept	called
NP-completeness.	A	problem	π	is	said	to	be	NP-complete	if	π	is	in	NP	and	all	other
problems	in	NP	can	be	transformed	or	reduced	in	polynomial	time	to	π.	This	means	that	if
π	is	intractable	then	all	other	problems	in	NP	are	intractable.	Conversely,	if	π	is	tractable,
then	all	other	problems	in	NP	are	also	tractable.	Thus,	all	the	problems	in	NP	are
‘equivalent’	in	this	sense.

In	1971,	Stephen	Cook	introduced	the	concept	of	NP-completeness	and	proved	that	a
particular	problem	called	the	‘satisfiability	problem’	is	NP-complete.	(The	satisfiability

problem	involves	Boolean	(or	logical)	expressions—for	example	the	expression	(a	or	b)
and	c,	where	the	terms	a,	b,	and	c	are	Boolean	(logical)	variables	having	only	the	possible
(truth)	values	TRUE	and	FALSE.	The	problems	asks:	‘Is	there	a	set	of	truth	values	for	the
terms	of	a	Boolean	expression	such	that	the	value	of	the	expression	is	TRUE?’)	Cook
proved	that	any	problem	in	NP	can	be	reduced	to	the	satisfiability	problem	which	is	also
in	NP.	Thus,	if	the	satisfiability	problem	is	in/tractable	then	so	is	every	other	problem	in
NP.

This	then	raised	the	following	question:	Are	there	polynomial	time	algorithms	for	all	NP
problems?	We	noted	earlier	that	NP	contains	P.	But	what	this	question	asks	is:	Is	P
identical	to	NP?	This	is	the	so-called	P	=	NP	problem,	arguably	the	most	celebrated	open
problem	in	theoretical	computer	science.	No	one	has	proved	that	P	=	NP,	and	it	is	widely
believed	that	this	is	not	the	case;	that	is,	it	is	widely	believed	(but	not	yet	proved)	that	P	≠
NP.	This	would	mean	that	there	are	problems	in	NP	(such	as	the	travelling	salesman	and
the	satisfiability	problems)	that	are	not	in	P,	hence	are	inherently	intractable;	and	if	they
are	NP-complete	then	all	other	problems	reducible	to	them	are	also	intractable.	There	are
no	practically	feasible	algorithms	for	such	problems.

What	the	theory	of	NP-completeness	tells	us	is	that	many	seemingly	distinct	problems	are
connected	in	a	strange	sort	of	way.	One	can	be	transformed	into	another;	they	are
equivalent	to	one	another.	We	grasp	the	significance	of	this	idea	once	we	realize	that	a
huge	range	of	computational	problems	applicable	in	business,	management,	industry,	and
technology—‘real	world’	problems—are	NP-complete:	if	only	one	could	construct	a
feasible	(polynomial	time)	algorithm	for	one	of	these	problems,	one	could	find	a	feasible
algorithm	for	all	the	others.

So	how	does	one	cope	with	such	intractable	problems?	One	common	approach	is	the
subject	of	Chapter	6.

Chapter	4
The	art,	science,	and	engineering	of
programming

To	repeat,	algorithmic	thinking	is	central	to	computer	science.	Yet,	algorithms	are	abstract
artefacts.	Computer	scientists	can	live	quite	contentedly	(if	they	so	desired)	in	the	rarified
world	of	algorithms	and	never	venture	into	the	‘real	world’,	much	as	‘pure’
mathematicians	might	do.	But	if	we	desire	real,	physical	computers	to	carry	out
computations	on	our	behalf,	if	we	want	physical	computers	to	not	only	do	the	kinds	of
computations	we	find	too	tedious	(though	necessary)	but	also	those	that	are	beyond	our
normal	cognitive	capacities,	then	algorithmic	thinking	alone	does	not	suffice.	They	must
be	implemented	in	a	form	that	can	be	communicated	to	physical	computers,	interpreted,
and	executed	by	them	on	their	own	terms	rather	than	on	human	terms.

This	is	where	programming	enters	the	computing	scene.	A	computer	program	is	the
specification	of	a	desired	computation	in	a	language	communicable	to	physical	computers.
The	act	of	constructing	such	computations	is	called	programming	and	the	languages	for
specifying	programs	are	called	programming	languages.

Programs	are	liminal	artefacts
The	concept	of	a	program	is	elusive,	subtle,	and	rather	strange.	For	one	thing,	as	I	explain
shortly,	the	same	computation	can	be	described	at	several	abstraction	levels	depending	on
the	language	in	which	it	is	expressed,	thus	allowing	for	multiple	equivalent	programs.
Secondly,	a	program	is	Janus-faced:	on	the	one	hand	the	program	is	a	piece	of	static	text,
that	is,	a	symbol	structure	that	has	all	the	characteristics	of	an	abstract	artefact.	On	the
other	hand,	a	program	is	a	dynamic	process—that	is,	it	causes	things	to	happen	within	a
physical	computer,	and	such	processes	consume	physical	time	and	physical	space;	thus	it
has	a	material	substrate	upon	which	it	acts.	Moreover,	it	requires	a	material	medium	for	it
to	work.

Thus	programs	have	an	abstract	and	a	material	face,	and	for	this,	we	may	call	programs
liminal	artefacts.	The	consequences	of	this	liminality	are	both	huge	and	controversial.

First,	within	the	computer	science	community,	some	are	drawn	to	the	abstractness	of
programs	and	they	hold	the	view	that	programs	are	mathematical	objects.	To	them,
programming	is	a	kind	of	mathematical	activity	involving	axioms,	definitions,	theorems,
and	proofs.	Other	computer	scientists	insist	on	its	material	facet	and	hold	that	programs
are	empirical	objects.	Programming	to	them	is	an	empirical	engineering	activity	involving
the	classical	engineering	tasks	of	specification	of	requirements,	design,	implementation,
and	conducting	experiments	that	test	and	evaluate	the	resulting	artefacts.

Secondly,	the	analogy	between	programs	and	the	mind	is	often	drawn.	If	a	program	is	a
liminal	artificial	object,	the	mind	is	a	liminal	natural	object.	On	the	one	hand,	mental	(or
cognitive)	processes	such	as	remembering,	thinking,	perceiving,	planning,	language
understanding	and	mastering,	etc.,	can	be	(and	have	been	for	centuries)	examined	as	if	the
mind	is	a	purely	abstract	thing	interacting	autonomously	with	the	‘real’	world.	Yet	the
mind	has	a	‘seat’.	Unless	one	is	an	unrepentant	dualist	who	completely	separates	mind
from	body,	one	does	not	believe	that	the	mind	can	exist	outside	the	brain—a	physical
object.	And	so,	while	some	philosophers	and	cognitive	scientists	study	the	mind	as	if	it	is
an	abstract	entity,	neuroscientists	seek	strictly	physical	explanations	of	mental	phenomena
in	terms	of	brain	processes.

Indeed,	the	scientific	study	of	cognition	has	been	profoundly	influenced	by	the	analogy	of
mind	with	programs.	One	consequence	has	been	the	development	of	the	branch	of
computer	science	called	artificial	intelligence	(AI)	which	attempts	to	create	mind-like	and
brain-like	computational	artefacts.	Another	has	been	the	transformation	of	cognitive
psychology	into	a	broader	discipline	called	cognitive	science	at	the	core	of	which	is	the
hypothesis	that	mental	processes	can	be	modelled	as	program-like	computations.

Thus,	the	intellectual	influence	of	computer	science	has	extended	well	beyond	the
discipline	itself.	Much	as	the	Darwinian	theory	of	evolution	has	extended	its	reach	beyond
biology	so	also	because	of	the	mind–program	analogy	computer	science’s	influence	has
gone	beyond	computing	itself.	Or	rather	(as	we	will	see	in	a	later	chapter)	the	very	idea	of
computing	has	extended	well	beyond	the	scope	of	physical	computers	and	automatic
computation.	I	think	it	is	fair	to	say	that	few	sciences	of	the	artificial	have	had	such
intellectual	consequences	outside	their	own	domains.

Yet	another	consequence	of	the	liminality	of	programs	is	that	programs	and	programming

are	inexorably	entwined	with	artificial	languages	called	programming	languages.	One	can
design	algorithms	using	natural	language	perhaps	augmented	with	some	artificial	notation
(as	is	seen	in	the	case	of	the	algorithms	presented	in	Chapter	3).	But	no	one	can	become	a
programmer	without	mastering	at	least	one	programming	language.	A	pithy	(if	only	rough)
formula	could	well	be:

This	itself	has	several	implications.

One	is	the	development	of	the	theory	of	programming	languages	as	a	branch	of	computer
science.	Inevitably,	this	has	led	to	a	relationship	between	this	theory	and	the	science	of
linguistics,	which	is	concerned	with	the	structure	of	natural	languages.

A	second	implication	is	the	never-ending	quest	for	the	‘dream’	programming	language
which	can	do	what	is	required	of	any	language	better	than	any	of	its	predecessors	or	its
contemporary	competitors.	This	is	the	activity	of	language	design.	The	challenge	to
language	designers	is	twofold:	to	facilitate	communication	of	computations	to	physical
computers	which	could	then	execute	these	computations	with	minimal	human
intervention;	and	also	to	facilitate	communication	with	other	human	beings	so	that	they
can	comprehend	the	computation,	analyse	it,	criticize	it,	and	offer	suggestions	for
improvement,	just	as	people	do	with	any	text.	This	dual	challenge	has	been	the	source	of
an	abiding	obsession	of	computer	scientists	with	programming	and	other	languages	of
computation.

Closely	related	to	language	design	is	a	third	outcome:	the	study	and	development	of
programs	called	compilers	that	translate	programs	written	in	a	programming	language	into
the	machine	code	of	particular	physical	computers.	Compiler	design	and	implementation
is	yet	another	branch	of	computer	science.

Finally,	there	has	been	the	effort	to	design	features	of	physical	computers	that	facilitate	the
compiler’s	task.	This	activity	is	called	‘language-oriented	computer	design’	and	has
historically	been	of	great	interest	within	the	branch	of	computer	science	called	computer
architecture	(see	Chapter	5).

Figure	3	shows	schematically	the	many	relationships	of	programs	and	programming	with
these	other	entities	and	disciplines.	The	entities	enclosed	in	rectangles	are	contributing
disciplines	outside	computer	science;	the	entities	enclosed	in	ovals	are	disciplines	within
computer	science.

3.	Programming,	related	disciplines,	and	associated	sciences.

Language,	thought,	reality,	and	programming
Notice,	I	say	‘language’	in	the	preceding	section,	not	‘notation’.	Notation	refers	to
symbols	invented	for	writing	about	something.	Thus,	chemical	or	mathematical	notation.
Language	goes	beyond	notation	in	that	it	affords	a	symbol	system	for	thinking	about
something.	Language	is	embroiled	with	thought	itself.

There	is	a	famous	issue	which	linguists	and	anthropologists	have	debated	over:	is	thought
defined	by	language?	There	are	those	who	assert	that	this	is	so,	that	the	language	we	use
determines	the	way	we	think	about	the	world	and	what	we	think	about,	indeed,	that	it
defines	our	conceptualization	of	reality	itself.	Its	most	extreme	implication	is	that	since
language	is	a	defining	element	of	culture,	thoughts,	percepts	or	concepts	are	not
translatable	from	one	language	culture	to	another.	We	are	each	trapped	in	our	own
language-defined	reality.	A	very	post-modern	condition.	Others	take	the	more	moderate
view	that	language	influences,	but	does	not	define,	how	we	think	about	the	world.	The
proposition	that	language	defines	or	influences	thought	is	called	the	Sapir–Whorf
hypothesis	after	the	anthropological	linguists	Edward	Sapir	and	Benjamin	Lee	Whorf	who
developed	it.	(It	is	also	called	the	‘principle	of	linguistic	relativity’.)

The	Sapir–Whorf	hypothesis	addressed	natural	languages.	Our	concern	is	with	artificial
languages,	specifically	those	invented	to	express	computations.	No	one	to	my	knowledge
has	framed	an	analogue	to	the	Sapir–Whorf	hypothesis	for	the	computational	realm	but	the
obsession	computer	scientists	have	shown	from	the	earliest	days	of	electronic	computers
with	programming	and	other	computational	languages	strongly	suggest	that	some	form	of
the	hypothesis	is	tacitly	accepted	by	the	computer	science	community.	More	accurately,
we	may	say	with	some	confidence	that	the	languages	of	computing	(in	particular,
programming)	are	intimately	entwined	with	the	nature	of	the	computing	environment;	and
that	programming	languages	influence	programmers’	mentality.

So	let	us	consider,	first,	programming	languages.	The	nature	of	programs	will	naturally
emerge	from	this	discussion.

Programming	languages	as	abstract	artefacts
It	was	mentioned	earlier	that	a	computation	can	be	specified	as	programs	at	different
abstraction	levels	that	vary	in	‘distance’	from	the	physical	computers	that	can	execute	the
programs.	Correspondingly,	programming	languages	can	be	conceived	at	different
abstraction	levels.	A	crude	dichotomy	separates	high-level	from	low-level	languages.	The
former	enable	programs	to	be	written	independent	of	all	physical	computers	that	would
execute	them,	and	the	latter	refers	to	languages	designed	with	respect	to	specific	families
of	computers	or	even	more	specifically	to	a	particular	computer.

Thus,	high-level	languages	are	‘machine-independent’	and	low-level	ones	are	‘machine-
dependent’	with	the	caveat	that	the	degree	of	independence	or	dependence	may	well	vary.
The	lowest	level	languages	are	called	assembly	languages	and	they	are	so	specific	to
particular	(family	of,	or	individual)	physical	computers	that	the	assembly	language
programmer	literally	manipulates	the	features	of	the	computers	themselves.

There	was	a	time	in	the	history	of	computing	when	almost	all	programming	was	done
using	assembly	languages.	Such	programs	were	still	symbol	structures	(and	to	a	very
moderate	extent	abstract)	but	translators	called	‘assemblers’	(themselves	programs)	would
convert	them	into	the	target	computers’	machine	code.	However,	because	of	the	tedium,
difficulty,	amount	of	human	time	required,	and	error-proneness	of	assembly	language
programming	the	focus	shifted	to	the	invention	and	design	of	increasingly	higher	level,
machine-independent	programming	languages,	and	the	task	of	translating	programs	in
such	languages	into	executable	machine	code	for	specific	computers	was	delegated	to
compilers.

In	this	chapter	hereafter,	and	in	the	remainder	of	this	book,	unless	stated	explicitly,	the
term	‘programming	language’	will	always	refer	to	high-level	languages.

Programming	languages,	in	contrast	to	natural	ones,	are	invented	or	designed.	They	are,
thus,	artefacts.	They	entail	the	use	of	notation	as	symbols.	As	we	will	see,	a	programming
language	is	actually	a	set	of	symbol	structures	and,	being	independent	of	physical
computers,	are	abstract	in	exactly	the	same	sense	that	algorithms	are	abstract.	We	thus
have	the	curious	situation	that	while	programs	written	in	such	languages	are	liminal,	the
languages	of	programming	themselves	are	abstract.

Language	=	notation	+	concepts	&	categories
Let	us	revisit	the	notation/language	distinction.	The	world	of	computing	is	populated	by
hundreds	of	computational	languages.	A	large	majority	of	these	are	for	programming	but
others	have	been	created	for	other	purposes,	in	particular	for	the	design	and	description	of
physical	computers	at	various	levels	of	abstraction	(see	Chapter	5).	The	latter	are
generically	called	‘computer	hardware	description	languages’	(CHDLs)	or	‘computer
design	and	description	languages’	(CDDLs).

These	computational	languages	employ	different	notations—symbols—and	a	part	of	the
mental	effort	in	learning	a	new	computational	language	goes	into	mastering	the	notation—
that	is,	what	the	symbols	symbolize.	This	entails	mapping	the	notational	signs	onto
fundamental	computational	concepts	and	linguistic	categories.	A	particular	language,
then,	comprises	a	body	of	concepts	and	categories	together	with	the	notation	that
represents	them.	Again,	as	a	rough	formula:

In	computing,	different	signs	have	been	deployed	in	different	languages	to	symbolize	the
same	concept.	Conversely,	the	same	sign	may	symbolize	different	concepts	in	different
languages.

For	example,	the	fundamental	programming	concept	known	as	the	assignment	(already
encountered	in	Chapter	3)	may	be	denoted	by	such	signs	as	‘=>’,	‘=’,	‘←’,	‘:=’	in	different
languages.	Thus	the	assignment	statements:

X	+	1	=>	X

X	=	X	+	1

X:=	X	+	1

X	←	X	+	1

X	+=	1

all	mean	the	same	thing:	the	current	value	of	the	variable	X	is	incremented	by	1	and	the
result	is	assigned	to	(or	copied	back	into)	X.	Assignment	is	a	computational	concept,	and
the	assignment	statement	is	a	linguistic	category,	and	is	present	in	most	programming
languages.	The	ways	of	representing	it	differ	from	one	language	to	another	depending	on
the	taste	and	predilection	of	the	language	designers.

Concepts	and	categories	in	programming	languages
So	what	are	these	concepts	and	categories?	Computing,	recall,	is	symbol	processing;	in
more	common	parlance	it	is	information	processing.	‘In	the	beginning	is	information’—or,
as	language	designers	prefer	to	call	it,	data—which	is	to	be	processed.	Thus	a	fundamental
concept	embedded	in	all	programming	languages	is	what	is	called	the	data	type.	As	stated
in	Chapter	1,	a	data	type	defines	the	nature	of	the	values	a	data	object	(otherwise	called	‘a
variable’)	can	hold	along	with	the	operations	that	are	permissible	(‘legal’)	on	such	values.
Data	types	are	either	‘primitive’	(or	‘atomic’)	or	‘structured’	(or	‘composite’),	composed
from	more	basic	data	types.

In	the	factorial	example	of	Chapter	3,	there	is	only	the	primitive	data	type	‘non-negative
integer’,	meaning	that	integers	greater	than	or	equal	to	0	are	admissible	as	values	of
variables	of	this	type;	and	only	integer	arithmetic	operations	can	be	performed	on
variables	of	this	type.	It	also	means	that	only	integer	values	can	be	assigned	to	variables	of
this	type.	For	example,	an	assignment	such	as

is	a	legal	statement	if	x	is	defined	as	of	data	type	integer.	If	x	has	not	been	declared	as
such,	if	instead	it	is	declared	as	(say)	a	character	string	(representing	a	name),	then	the
assignment	will	be	illegal.

A	number	itself,	is	not	necessarily	an	integer	unless	it	is	defined	as	such.	Thus,	from	a
computational	point	of	view,	a	telephone	number	is	not	an	integer;	it	is	a	numeric
character	string;	one	cannot	add	or	multiply	two	telephone	numbers.	So,	if	x	is	declared	as
a	numeric	character	string,	the	earlier	assignment	will	not	be	valid.

The	linear	search	algorithm	of	Chapter	3	includes	both	primitive	and	structured	data	types.
The	variable	i	is	of	the	primitive	type	integer;	the	variable	given	is	of	structured	type
‘character	string’,	itself	composed	out	of	the	primitive	type	‘character’.	The	list	student	is
also	a	structured	data	type,	sometimes	called	‘linear	list’,	sometimes	‘array’.	The	i-th
element	of	student	is	itself	a	structured	data	type	(called	by	different	names	in	different
programming	languages,	including	‘record’	and	‘tuple’)	comprising	here	of	two	data
types,	one	(name)	of	type	character	string,	the	other	(email)	also	of	type	character	string.
So	a	variable	such	as	student	is	a	hierarchically	organized	data	structure:	characters
composed	into	character	strings;	character	strings	composed	into	tuples	or	records;	tuples
composed	into	lists	or	arrays.

But	data	or	information	is	only	the	beginning	of	a	computation.	Moreover	the	variables
themselves	are	passive.	Computation	involves	action	and	the	composition	of	actions	into
processes.	A	programming	language,	thus,	must	not	only	have	the	facility	for	specifying
data	objects,	they	must	also	include	statements	that	specify	actions	and	processes.

In	fact,	we	have	already	encountered	several	times	the	most	fundamental	statement	types
in	the	preceding	chapter.	One	is	the	assignment	statement:	its	execution	invokes	a	process
that	involves	both	a	direction	and	a	temporal	flow	of	information.	For	example,	in
executing	the	assignment	statement

where	A	and	B	are	both	variables,	information	flows	from	B	to	A.	But	it	isn’t	like	water
flowing	from	one	container	to	another.	The	value	of	B	is	not	changed	or	reduced	or

emptied	after	the	execution	of	this	statement.	Rather,	the	value	of	B	is	‘read’	and	‘copied’
into	A	so	that	at	the	end,	the	values	of	A	and	B	are	equal.	However,	in	executing	the
statement

the	value	of	A	does	change:	new	value	of	A	=	old	value	of	A	+	value	of	B.	The	value	of	B
remains	unchanged.

The	general	form	of	the	assignment	statement	is

where	E	is	an	expression	(such	as	the	arithmetic	expressions	Y	+	1,	(X	–	Y)	*	(Z/W)).	The
execution	of	the	assignment	in	general	is	a	two-step	process:	E	is	first	evaluated;	then	this
value	is	assigned	to	X.

The	assignment	statement,	then,	specifies	the	unit	of	action	in	a	computation.	It	is	the
atomic	process	of	computations.	But	just	as	in	the	natural	world	atoms	combine	into
molecules	and	molecules	into	larger	molecules	so	also	in	the	computational	world.
Assignments	combine	to	form	larger	segments,	and	the	latter	combine	to	form	still	larger
segments	until	complete	programs	obtain.	There	is	hierarchy	at	work	in	the	computational
world	as	there	is	in	nature.

Thus,	a	major	task	of	computer	scientists	has	been	to	discover	the	rules	of	composition,
invent	statement	types	that	represent	these	rules,	and	design	notations	for	each	statement
type.	While	the	rules	of	composition	and	statement	types	may	be	quite	universal,	different
programming	languages	may	use	different	notations	to	represent	them.

One	such	statement	type	is	the	sequential	statement:	two	or	more	(simpler)	statements	are
composed	sequentially	so	that	when	executed	they	are	executed	in	the	order	of	the
component	statements.	The	notation	I	used	in	Chapter	3	to	denote	sequencing	was	the	‘;’.
Thus,	in	Euclid’s	algorithm	we	find	the	sequential	statement

m	←	n;

n	←	r;

goto	step	1

in	which	the	flow	of	control	proceeds	through	the	three	statements	according	to	the	order
shown.

But	computations	may	also	require	making	choices	between	one	of	several	alternatives.
The	if	…	then	…	else	statements	used	in	Chapter	3	in	several	of	the	algorithms	are
instances	of	the	conditional	statement	type	in	programming	languages.	In	the	general	form
if	C	then	S1	else	S2,	the	condition	C	is	evaluated,	and	if	true	then	control	goes	to	S1,
otherwise	control	flows	to	S2.

Sometimes,	we	need	to	return	flow	of	control	to	an	earlier	part	of	the	computation	and
repeat	it.	The	notations	while	…	do	and	repeat	…	until	used	in	the	linear	search	and
nonrecursive	factorial	algorithms	in	Chapter	3	exemplify	these	instances	of	the	iteration
statement	type.

These	three	statement	types,	the	sequential,	conditional,	and	iterative,	are	the	building
blocks	for	the	construction	of	programs.	Every	programming	language	provides	notation

to	represent	these	categories.	In	fact,	in	principle,	any	computation	can	be	specified	by	a
program	involving	a	combination	of	just	these	three	statement	types.	(This	was	proved	in
1966	by	two	Italian	computer	theorists,	Corrado	Böhm	and	Giuseppe	Jacopini.)	In	practice
many	other	rules	of	composition	and	corresponding	statement	types	have	been	proposed	to
facilitate	programming	(such	as	the	unconditional	branch	exemplified	by	the	goto
statement	used	in	Euclid’s	algorithm	in	Chapter	3).

Programming	as	art
Programming	is	an	act	of	design	and	like	all	design	activities,	it	entails	judgement,
intuition,	aesthetic	taste,	and	experience.	It	is	for	this	that	Donald	Knuth	entitled	his
celebrated	and	influential	series	of	texts	The	Art	of	Computer	Programming	(1968–9).
Almost	a	decade	later	Knuth	elaborated	on	this	theme	in	a	lecture.	In	speaking	of	the	art	of
programming,	he	wrote,	he	was	alluding	to	programming	as	an	art	form.	Programs	should
be	aesthetically	satisfying;	they	should	be	beautiful.	The	experience	of	writing	a	program
should	be	akin	to	composing	poetry	or	music.	Thus,	the	idea	of	style,	so	intimately	a	part
of	the	discourses	of	art,	music,	and	literature,	must	be	an	element	of	programming
aesthetics.	Recall	the	Dutch	computer	scientist	Edsger	Dijkstra’s	remark	mentioned	in
Chapter	3:	in	devising	algorithms,	‘Beauty	is	our	business’.	The	Russian	computer
scientist	A.P.	Ershov	has	echoed	these	sentiments.

Along	this	same	theme,	Knuth	later	proposed	that	programs	should	be	works	of	literature,
that	one	can	gain	pleasure	in	writing	programs	in	such	a	way	that	the	programs	will	give
pleasure	on	being	read	by	others.	(He	called	this	philosophy	‘literate	programming’,
though	I	think	‘literary	programming’	would	have	been	more	apt	as	an	expression	of	his
sentiment.)

Programming	as	a	mathematical	science
But,	of	course,	computer	scientists	(including	Knuth)	seek	to	discover	more	objective	and
formal	foundations	for	programming.	They	want	a	science	of	programming.	The	Böhm–
Jacopini	result	mentioned	earlier	is	the	sort	of	formal,	mathematical	result	computer
scientists	yearn	for.	In	fact,	by	a	‘science’	of	programming	many	computer	scientists	mean
a	mathematical	science.

The	view	of	programming	as	a	mathematical	science	has	been	most	prominently
manifested	in	three	other	ways—all	having	to	do	with	the	abstract	face	of	programs	or,	as
I	noted	early	in	this	chapter,	the	view	held	by	some	that	programs	are	mathematical
objects.

One	is	the	discovery	of	rules	of	syntax	of	programming	languages.	These	are	rules	that
determine	the	grammatical	correctness	of	programs	and	have	a	huge	practical	bearing,
since	one	of	the	first	tasks	of	compilers	(automatic	translators	of	high	level	programs	into
machine	code)	is	to	ensure	that	the	program	it	is	translating	is	grammatically	or
syntactically	correct.	The	theory	of	programming	language	syntax	owes	its	beginnings	to
the	linguist	Noam	Chomsky’s	work	on	the	theory	of	syntax	(for	natural	languages).

The	second	contribution	to	the	science	of	programming	is	the	development	of	rules	of
semantics—that	is,	principles	that	define	the	meaning	of	the	different	statement	types.	Its
importance	should	be	quite	evident:	in	order	to	use	a	programming	language	the
programmer	must	be	quite	clear	about	the	meaning	of	its	component	statement	types.	So
also,	the	compiler	writer	must	understand	unambiguously	the	meaning	of	each	statement
type	in	order	to	translate	programs	into	machine	code.	But	semantics,	as	the	term	is	used
in	linguistics,	is	a	thorny	problem	since	it	involves	relating	linguistic	categories	to	what
they	refer	to	in	the	world,	and	the	theory	of	programming	language	semantics	mirrors
these	same	difficulties.	It	is	fair	to	say	that	the	theory	of	semantics	in	programming,
despite	its	sophisticated	development,	has	not	had	the	same	kind	of	acceptance	by	the
computer	science	community,	nor	has	it	been	used	so	effectively	as	the	theory	of	syntax.

The	third	contribution	to	the	science	of	programming	is	closely	related	to	the	semantics
issue.	This	contribution	is	founded	on	the	conviction	of	such	computer	scientists	as	the
Englishman	C.A.R.	Hoare	and	the	Dutchman	Edsger	Dijkstra	that	computing	is	akin	to
mathematics	and	that	the	same	principles	that	mathematicians	use,	such	as	axioms,	rules
of	deductive	logic,	theorems,	and	proofs,	are	applicable	to	programming.	This	philosophy
was	stated	quite	unequivocally	and	defiantly	by	Hoare	who	announced,	in	1985,	the
following	manifesto:
(a)	Computers	are	mathematical	machines.	That	is,	their	behaviour	can	be	mathematically	defined	and	every	detail	is

logically	derivable	from	the	definition.

(b)	Programs	are	mathematical	expressions.	They	describe	precisely	and	in	detail	the	behaviour	of	the	computer	on
which	they	are	executed.

(c)	A	programming	language	is	a	mathematical	theory.	It	is	a	formal	system	which	helps	the	programmer	in	both
developing	a	program	and	proving	that	the	program	satisifies	the	specification	of	its	requirements.

(d)	Programming	is	a	mathematical	activity.	Its	practice	requires	application	of	the	traditional	methods	of	mathematical
understanding	and	proof.

In	the	venerable	axiomatic	tradition	in	mathematics,	one	begins	with	axioms	(propositions
that	are	taken	to	be	‘self-evidently’	true	about	the	domain	of	interest,	such	as	the	principle

of	mathematical	induction	mentioned	in	Chapter	3),	and	definitions	of	basic	concepts,	and
proves	progressively,	new	insights	and	propositions	(collectively	called	theorems)	from
these	axioms,	definitions	and	already	proved	theorems,	using	rules	of	deduction.	Inspired
by	this	tradition,	the	third	contribution	to	a	mathematical	science	of	programming
concerns	the	construction	of	axiomatic	proofs	of	the	correctness	of	programs	based	on
axioms,	definitions	and	rules	of	deduction	defining	the	semantics	of	the	relevant
programming	language.	The	semantics	is	called	axiomatic	semantics,	and	their	application
is	known	as	axiomatic	proofs	of	correctness.
As	in	the	axiomatic	approach	in	mathematics	(and	its	use	in	such	disciplines	as
mathematical	physics	and	economics),	there	is	much	formal	elegance	and	beauty	in	the
mathematical	science	of	programming.	However,	it	is	only	fair	to	point	out	that	while	a
formidable	body	of	knowledge	has	been	developed	in	this	realm,	a	goodly	number	of
academic	computer	scientists	and	industrial	practitioners	remain	skeptical	of	their
practical	applicability	in	the	hurly-burly	‘real	world’	of	computing.

Programming	as	(software)	engineering
This	is	because	of	the	view	held	by	many	that	programs	are	not	‘just’	beautiful	abstract
artefacts.	Even	Hoare’s	manifesto	recognized	that	programs	must	describe	the	behaviour
of	the	computers	which	execute	them.	The	latter	is	the	material	face	of	programs	and
which	confers	liminality	to	them.	To	many,	in	fact,	programs	are	technological	products,
hence	programming	is	an	engineering	activity.

The	word	software	appears	to	have	entered	the	computing	vocabulary	in	1960.	Yet	its
connotation	remains	uncertain.	Some	use	‘software’	and	‘program’	as	synonyms.	Some
think	of	software	to	mean	the	special	and	essential	set	of	programs	(such	as	operating
systems	and	other	tools	and	‘utilities’	called,	collectively,	‘system	programs’)	that	are	built
to	execute	atop	a	physical	computer	to	create	the	virtual	machines	(or	computer	systems)
that	others	can	use	more	efficaciously	(see	Figure	1	in	Chapter	2).	Still	others	consider
software	to	mean	not	only	programs	but	the	associated	documentation	that	is	essential	to
the	development,	operation,	maintenance	and	modification	of	large	programs.	And	there
are	some	who	would	include	human	expertise	and	knowledge	in	this	compendium.

At	any	rate,	‘software’	has	the	following	significant	connotations:	it	is	that	part	of	a
computer	system	that	is	not	itself	physical;	it	requires	the	physical	computer	to	make	it
operational;	and	there	is	a	sense	in	which	software	is	very	much	an	industrial	product	with
all	that	the	adjective	implies.

Software	is,	then,	a	computational	artefact	that	facilitates	the	usage	of	a	computer	system
by	many	(possibly	millions,	even	billions	of)users.	Most	times	(though	not	always)	it	is	a
commercially	produced	artefact	which	manifests	certain	levels	of	robustness	and
reliability	we	have	come	to	expect	of	industrial	systems.

Perhaps	in	analogy	with	other	industrial	systems,	a	software	development	project	is
associated	with	a	life	cycle.	And	so,	like	many	other	complex,	engineering	projects	(e.g.	a
new	space	satellite	launch	project)	the	development	of	a	software	system	is	regarded	as	an
engineering	project,	and	it	is	in	this	context	that	the	term	software	engineering	(first
coined	in	the	mid-1960s)	seems	particularly	apposite.	This	has	led,	naturally,	to	the	idea	of
the	‘software	engineer’.	It	is	not	a	coincidence	that	a	large	portion	of	thinking	about
software	engineering	has	originated	in	the	industrial	sector.

Various	models	of	the	software	life	cycle	have	been	proposed	over	the	past	fifty	years.
Collectively,	they	all	recognize	that	the	development	of	a	software	system	involves	a
number	of	stages:
(a)	Analysis	of	the	requirements	the	software	is	intended	to	serve.

(b)	Development	of	precise	functional,	performance	and	cost	specifications	of	the	different	components	(‘modules’)	that
can	be	identified	from	requirements	analysis.

(c)	The	design	of	the	software	system	that	will	(hopefully)	meet	the	specifications.	This	activity	may	itself	consist	of
conceptual	and	detailed	design	stages.

(d)	Implementing	the	design	as	an	operational	software	system	specified	in	a	programming	language	and	compiled	for
execution	on	the	target	computer	system(s).

(e)	Verification	and	validation	of	the	implemented	set	of	programs	to	ensure	that	they	meet	the	specifications.

(f)	Once	verified	and	validated,	the	maintenance	of	the	system	and,	if	and	whenever	necessary,	its	modification.

These	stages	do	not,	of	course,	follow	in	a	rigidly	linear	way.	There	is	always	the

possibility	of	returning	to	an	earlier	stage	from	a	later	one	if	flaws	and	faults	are
discovered.	Moreover,	this	software	life	cycle	also	requires	an	infrastructure—of	tools,
methodology,	documentation	standards,	and	human	expertise	which	collectively	constitute
a	software	engineering	environment.
One	must	also	note	that	one	or	more	of	these	stages	will	entail	solid	bodies	of	scientific
theories	as	part	of	their	deployment.	Specification	and	design	may	involve	the	use	of
languages	having	their	own	syntax	and	semantics;	detailed	design	and	implementation	will
involve	programming	languages	and,	possibly,	the	use	of	axiomatic	proof	techniques.
Verification	and	validation	will	invariably	demand	sophisticated	modes	of	proving	and
experimentally	testing	the	software.	Much	as	the	classical	fields	of	engineering	(such	as
structural	or	mechanical	engineering)	entail	engineering	sciences	as	components,	so	also
software	engineering.

Chapter	5
The	discipline	of	computer	architecture

The	physical	computer	is	at	the	bottom	of	the	hierarchy	MY_COMPUTER	shown	in
Figure	1.	In	everyday	parlance	the	physical	computer	is	referred	to	as	hardware.	It	is
‘hard’	in	that	it	is	a	physical	artefact	that	ultimately	obeys	the	laws	of	nature.	The	physical
computer	is	the	fundamental	material	computational	artefact	of	interest	to	computer
scientists.

But	if	someone	asks:	‘What	is	the	nature	of	the	physical	computer?’	I	may	equivocate	in
my	answer.	This	is	because	the	physical	computer,	though	a	part	of	a	larger	hierarchy,	is
itself	complex	enough	that	it	manifests	its	own	internal	hierarchy.	Thus	it	can	be	designed
and	described	at	multiple	levels	of	abstraction.	The	relationship	between	these	levels
combine	the	principles	of	compositional,	abstraction/refinement,	and	constructive
hierarchy	discussed	in	Chapter	1.

Perhaps	the	most	significant	aspect	of	this	hierarchy	from	a	computer	scientist’s
perspective	(and	we	owe	it,	in	major	part,	to	the	genius	of	the	Hungarian-American
mathematician	and	scientific	gadfly	John	von	Neumann	to	first	recognize	it)	is	the
distinction	of	the	physical	computer	as	a	symbol	processing	computational	artefact	from
the	physical	components,	obeying	the	laws	of	physics,	that	realize	this	artefact.	This
separation	is	important.	As	a	symbol	processor,	the	computer	is	abstract	in	exactly	the
same	sense	that	software	is	abstract;	yet,	like	software	this	abstract	artefact	has	no
existence	without	its	physical	implementation.

The	view	of	the	physical	computer	as	an	abstract,	symbol	processing	computational
artefact	constitutes	the	computer’s	architecture.	(I	have	used	the	term	‘architecture’	before
to	mean	the	functional	structure	of	the	virtual	machines	shown	in	Figure	1.	But	now,
‘computer	architecture’	has	a	more	specific	technical	connotation.)	The	physical	(digital)
components	that	implement	the	architecture—the	actual	hardware—constitutes	its
technology.	We	thus	have	this	distinction	between	‘computer	architecture’	and	(digital)
technology.

There	is	another	important	aspect	of	this	distinction.	A	given	architecture	can	be
implemented	using	different	technologies.	Architectures	are	not	independent	of
technologies	in	that	developments	in	the	latter	influence	architecture	design,	but	there	is	a
certain	amount	of	autonomy	or	‘degrees	of	freedom’	the	designer	of	computer
architectures	enjoy.	Conversely,	the	design	of	an	architecture	might	shape	the	kind	of
technology	deployed.

To	draw	an	analogy,	consider	an	institution	such	as	a	university.	This	has	both	its	abstract
and	material	characteristics.	The	organization	of	the	university,	its	various	administrative
and	academic	units,	their	internal	structure	and	functions,	and	so	on,	is	the	analogue	to	a
computer’s	architecture.	One	can	design	a	university	(it	is,	after	all,	an	artefact),	describe
it,	discuss	and	analyse	it,	criticize	it,	alter	its	structure,	just	as	one	can	any	other	abstract
entity.	But	a	university	is	implemented	by	way	of	human	and	physical	resources.	They	are
the	analogue	to	a	computer’s	(hardware)	technology.	Thus,	while	the	design	or	evolution
of	a	university	entails	a	considerable	degree	of	autonomy,	its	realization	can	only	depend
on	the	nature,	availability	and	efficacy	of	its	resources	(the	people	employed,	the
buildings,	the	equipment,	the	physical	space,	the	campus	structure	as	a	whole,	etc.).
Conversely,	the	design	of	a	university’s	organization	will	influence	the	kinds	of	resources
that	have	to	be	in	place.

So	here	are	the	key	terms	for	this	discussion:	computer	architecture	is	the	discipline	within
computer	science	concerned	with	the	design,	description,	analysis,	and	study	of	the	logical
organization,	behaviour,	and	functional	elements	of	a	physical	computer;	all	of	that
constitutes	the	(physical)	computer’s	architecture.	The	task	of	the	computer	architect	is	to
design	architectures	that	satisfy	the	needs	of	the	users	of	the	physical	computer	(software
engineers,	programmers	and	algorithm	designers,	non-technical	users)	on	the	one	hand
and	yet	are	economically	and	technologically	viable.

Computer	architectures	are	thus	liminal	artefacts.	The	computer	architect	must	navigate
delicately	between	the	Scylla	of	the	computer’s	functional	and	performance	requirements
and	the	Charybdis	of	technological	feasibility.

Solipsistic	and	sociable	computers
The	globalization	of	everything	owes	much	to	the	computer.	If	‘no	man	is	an	island	entire
of	itself’,	then	nor	in	the	21st	century	is	the	computer.	But	once	upon	a	time,	and	for	many
years,	computers	did	indeed	exist	as	islands	of	their	own.	A	computational	artefact	of	the
kind	depicted	as	TEXT	in	Figure	1	would	go	about	its	tasks	as	if	the	world	beyond	did	not
exist.	Its	only	interaction	with	the	environment	was	by	way	of	input	data	and	commands
and	its	output	results.	Other	than	that,	for	all	practical	purposes,	the	physical	computer,
along	with	its	dedicated	system	and	application	programs	and	other	tools	(such	as
programming	languages),	lived	in	splendid,	solipsistic	isolation.

But,	as	just	noted,	few	computers	are	solipsistic	nowadays.	The	advent	of	the	Internet,	the
institution	of	emails,	the	World	Wide	Web,	and	the	various	forms	of	social	media	have	put
paid	to	computational	solipsism.	Even	the	most	reclusive	user’s	laptop	or	smart	phone	is	a
sociable	computer	as	soon	as	that	user	goes	online	to	purchase	a	book	or	check	out	the
weather	or	seek	directions	to	go	to	some	place.	His	computer	is	sociable	in	that	it	interacts
and	communicates	with	innumerable	other	computers	(though	blissfully	unknown	to	him)
physically	located	all	over	the	planet	through	the	network	that	is	the	Internet.	Indeed,
every	emailer,	every	seeker	of	information,	every	watcher	of	an	online	video	is	not	just
using	the	Internet:	her	computer	is	part	of	the	Internet.	Or	rather,	the	Internet	is	one	global
interactive	community	of	sociable	computational	artefacts	and	human	agents.

But	there	are	more	modest	networks	of	which	a	computer	can	be	a	part.	Machines	within
an	organization	(such	as	a	university	or	a	company)	are	connected	to	one	another	through
what	are	called	‘local	area	networks’.	And	a	constellation	of	computers	distributed	over	a
region	may	collaborate,	each	performing	its	own	computational	task	but	exchanging
information	as	and	when	needed.	Such	systems	are	traditionally	called	multicomputing	or
distributed	computing	systems.

The	management	of	multicomputing	or	distributed	computing	or	Internet	computing	is
effected	by	a	combination	of	network	principles	called	‘protocols’	and	extremely
sophisticated	software	systems.	When	we	consider	the	discipline	of	computer	architecture,
however,	it	is	the	individual	computer,	whether	solipsistic	or	sociable,	that	commands	our
attention.	It	is	this	I	discuss	in	the	remainder	of	this	chapter.

Outer	and	inner	architectures
The	word	‘architecture’	in	the	context	of	computers	was	first	used	in	the	early	1960s	by
three	IBM	engineers,	Gene	Amdahl,	Frederick	Brooks,	and	Gerrit	Blaauw.	They	used	this
term	to	mean	the	collection	of	functional	attributes	of	a	physical	computer	as	available	to
the	lowest	level	programmer	of	the	computer	(system	programmers	who	build	operating
systems,	compilers,	and	other	basic	utilities	using	assembly	languages);	its	‘outer	façade’
so	to	speak.	Since	then,	however,	the	practice	of	computer	architecture	has	extended	to
include	the	internal	logical,	structural,	and	functional	organization	and	behaviour	of	the
physical	(hardware)	components	of	the	machine.	Thus,	in	practice,	‘computer	architecture’
refers	to	the	functional	and	logical	aspects	of	both	the	outer	façade	and	the	interior	of	a
physical	computer.	Yet,	no	agreed	upon	terms	exist	for	these	two	aspects;	here,	for
simplicity,	I	will	call	them	‘outer’	and	‘inner’	architectures,	respectively.

The	two	are	hierarchically	related.	They	are	two	different	abstractions	of	the	physical
computer,	with	the	outer	architecture	an	abstraction	of	the	inner	one	or,	conversely,	the
inner	architecture	a	refinement	of	the	outer	one.	Or,	depending	on	the	design	strategy
used,	one	may	regard	a	computer’s	inner	architecture	as	an	implementation	of	the	outer
one.

The	design	of	outer	computer	architectures	is	shaped	by	forces	exerted	from	the
computer’s	computational	environment:	since	the	outer	architecture	is	the	interface
between	the	physical	computer	and	system	programmers	who	create	the	virtual	machines
the	‘ordinary’	users	of	the	computer	‘see’,	it	is	natural	that	the	functional	requirements
demanded	by	this	environment	will	exert	an	influence	on	the	outer	architectural	design.
For	example,	if	the	computer	C	is	intended	to	support	the	efficient	execution	of	programs
written	in	a	particular	kind	of	language,	say	L,	then	the	outer	architecture	of	C	may	be
oriented	toward	the	features	of	L;	thus	easing	the	task	of	the	language	compiler	in
translating	programs	written	in	L	into	machine	code	for	C.	Or	if	the	operating	system	OS
that	sits	atop	C	has	certain	facilities,	then	the	implementation	of	OS	may	be	facilitated	by
appropriate	features	incorporated	into	C ’s	outer	architecture.

On	the	other	hand,	since	a	computer’s	inner	architecture	will	be	implemented	by	physical
(hardware)	components,	and	these

4.	Computer	architectures	and	their	external	constraints.

components	are	built	using	a	particular	kind	of	technology	T,	the	design	of	the	inner
architecture	will	be	constrained	by	features	of	T.

At	the	same	time,	the	design	of	the	outer	architecture	may	be	shaped	and	constrained	by
the	nature	of	the	inner	architecture	and	vice	versa.	Thus,	there	is	an	intimate	relationship
between	the	computational	environment,	the	outer	architecture	of	the	computer,	its	inner
architecture,	and	the	physical	technology	(Figure	4).

The	outer	architecture
The	sanctum	sanctorum	of	a	computer’s	outer	architecture	is	its	instruction	set,	which
specifies	the	repertoire	of	operations	the	computer	can	be	directly	commanded	to	perform
by	a	programmer.	Exactly	what	types	of	operations	can	be	performed	will	both	determine
and	be	determined	by	the	set	of	data	types	the	computer	directly	supports	or	‘recognizes’.
For	example,	if	the	computer	is	intended	to	efficiently	support	scientific	and	engineering
computations	the	significant	data	types	will	be	real	numbers	(e.g.	6.483,	4	*	108,	−
0.000021,	etc.)	and	integers.	Thus	the	instruction	set	should	include	a	range	of	arithmetic
instructions.

In	addition	to	such	domain-specific	instructions,	there	will	always	be	a	repertoire	of
general	purpose	instructions,	for	example,	for	implementing	conditional	(e.g.	if	then	else),
iterative	(e.g.	while	do)	and	unconditional	branch	(e.g.	goto)	kinds	of	programming
language	constructs.	Other	instructions	may	enable	a	program	to	be	organized	into
segments	or	modules	responsible	for	different	kinds	of	computations,	with	the	capability
of	transferring	control	from	one	module	to	another.

An	instruction	is	really	a	‘packet’	that	describes	the	operation	to	be	performed	along	with
references	to	the	locations	(‘addresses’)	of	its	input	data	objects	(‘operands’	in
architectural	vocabulary)	and	the	location	of	where	its	output	data	will	be	placed.	This
idea	of	address	implies	a	memory	space.	Thus,	there	are	memory	components	as	part	of	an
outer	architecture.	Moreover,	these	components	generally	form	a	hierarchy:

LONG-TERM	MEMORY—known	as	‘backing	store’,	‘secondary	memory’,	or	‘hard	drive’.

MEDIUM-TERM	MEMORY—otherwise	known	as	‘main	memory’.

VERY	SHORT-TERM	(WORKING)	MEMORY—known	as	registers.

This	is	a	hierarchy	in	terms	of	retentivity	of	information,	size	capacity,	and	speed	of
access.	Thus,	even	though	an	outer	architecture	is	abstract,	the	material	aspect	of	the
physical	computer	is	rendered	visible:	space	(size	capacity)	and	time	are	physical,
measured	in	physical	units	(bits	or	bytes	of	information,	nanoseconds	or	picoseconds	of
time,	etc.)	not	abstract.	It	is	this	combination	that	makes	a	computer	architecture	(outer	or
inner)	a	liminal	artefact.

The	long-term	memory	is	the	longest	in	retentivity	(in	its	capacity	to	‘remember’)—
permanent,	for	all	practical	purposes.	It	is	also	the	largest	in	size	capacity,	but	slowest	in
access	speed.	Medium-term	memory	retains	information	only	as	long	as	the	computer	is
operational.	The	information	is	lost	when	the	computer	is	powered	off.	Its	size	capacity	is
far	less	than	that	of	long-term	memory	but	its	access	time	is	far	shorter	than	that	of	long-
term	memory.	Short-term	or	working	memory	may	change	its	contents	many	times	in	the
course	of	a	single	computation;	its	size	capacity	is	several	orders	of	magnitude	lower	than
that	of	medium-term	memory,	but	its	access	time	is	much	less	than	that	of	long-term
memory.

The	reason	for	a	memory	hierarchy	is	to	maintain	a	judicious	balance	between	retentivity,
and	space	and	time	demands	for	computations.	There	will	be	also	instructions	in	the
instruction	set	to	effect	transfers	of	programs	and	data	between	these	memory
components.

The	other	features	of	outer	architecture	are	built	around	the	instruction	set	and	its	set	of

data	types.	For	example,	instructions	must	have	ways	of	identifying	the	locations
(‘addresses’)	in	memory	of	the	operands	and	of	instructions.	The	different	ways	of
identifying	memory	addresses	are	called	‘addressing	modes’.	There	will	also	be	rules	or
conventions	for	organizing	and	encoding	instructions	of	various	types	so	that	they	may	be
efficiently	held	in	memory;	such	conventions	are	called	‘instruction	formats’.	Likewise,
‘data	formats’	are	conventions	for	organizing	various	data	types;	data	objects	of	a
particular	data	type	are	held	in	memory	according	to	the	relevant	data	format.

Finally,	an	important	architectural	parameter	is	the	word	length.	This	determines	the
amount	of	information	(measured	in	number	of	bits)	that	can	be	simultaneously	read	from
or	written	into	medium-term	(main)	memory.	The	speed	of	executing	an	instruction	is	very
much	dependent	on	word	length,	as	also	the	range	of	data	that	can	be	accessed	per	unit
time.

Here	are	a	few	typical	examples	of	computer	instructions	(or	machine	instructions,	a	term
I	have	already	used	before)	written	in	symbolic	(assembly	language)	notation,	along	with
their	semantics	(that	is	the	actions	these	instructions	cause	to	happen).

Instruction Meaning	(Action)
1.	LOAD	R2,	(R1,	D) R2	←	main-memory	[R1	+	D]
2.	ADD	R2,	1 R2	←	R2	+	1
3.	JUMP	R1,	D goto	main-memory	[R1	+	D]

Legend:

R1,	R2:	registers

main-memory:	medium-term	memory

1:	the	integer	constant	‘1’

D:	an	integer	number

‘R1	+	D’	in	(1)	adds	the	number	‘D’	to	the	contents	of	register	R1	and	this	determines	the
main-memory	address	of	an	operand.	‘R1	+	D’	in	(3)	computes	an	address	likewise	but
this	address	is	interpreted	as	that	of	an	instruction	in	main-memory	to	which	control	is
transferred.

The	inner	architecture
A	physical	computer	is	ultimately	a	complex	of	circuits,	wires,	and	other	physical
components.	In	principle,	the	outer	architecture	can	be	explained	as	the	outcome	of	the
structure	and	behaviour	of	these	physical	components.	However,	the	conceptual	distance
between	an	abstract	artefact	like	an	outer	architecture	and	the	physical	circuits	is	so	large
that	it	is	no	more	meaningful	to	attempt	such	an	explanation	than	it	is	to	explain	or
describe	a	whole	living	organism	(except	perhaps	bacteria	and	viruses)	in	terms	of	its	cell
biology.	Cell	biology	does	not	suffice	to	explain,	say,	the	structure	and	functioning	of	the
cardio-vascular	system.	Entities	above	the	cell	level	(e.g.	tissues	and	organs)	need	to	be
understood	before	the	whole	system	can	be	understood.	So	also,	digital	circuit	theory	does
not	suffice	to	explain	the	outer	architecture	of	a	computer,	be	it	a	laptop	or	the	world’s
most	powerful	supercomputer.

This	conceptual	distance	in	the	case	of	computers—sometimes	called	‘semantic	gap’—is
bridged	in	a	hierarchic	fashion.	The	implementation	of	an	outer	architecture	is	explained
in	terms	of	the	inner	architecture	and	its	components.	If	the	inner	architecture	is	itself
complex	and	there	is	still	a	conceptual	distance	from	the	circuit	level,	then	the	inner
architecture	is	described	and	explained	in	terms	of	a	still	lower	level	of	abstraction	called
microarchitecture.	The	latter	in	turn	may	be	refined	to	what	is	called	the	‘logic	level’,	and
this	may	be	sufficiently	close	to	the	circuit	level	that	it	can	be	implemented	in	terms	of	the
latter	components.	Broadly	speaking,	a	physical	computer	will	admit	of	the	following
levels	of	description/abstraction:

Level	4:	Outer	architecture

Level	3:	Inner	architecture

Level	2:	Microarchitecture

Level	1:	Logic	level

Level	0:	Circuit	level

Computer	architects	generally	concern	themselves	with	the	outer	and	inner	architectures,
and	a	refinement	of	the	inner	architecture	which	is	shown	earlier	as	microarchitecture	(this
refinement	is	explained	later).	They	are	interested	not	only	in	the	features	constituting
these	architectural	levels	but	also	the	relationship	between	them.

The	principal	components	of	a	computer’s	inner	architecture	are	shown	in	Figure	5.	It
consists	of	the	following.	First,	a	memory	system	which	includes	the	memory	hierarchy
visible	in	the	outer	architecture	but	includes	other	components	that	are	only	visible	in	the
inner	architectural	level.	This	system	includes	controllers	responsible	for	the	management
of	information	(symbol	structures)	that	pass	between	the	memories	in	the	hierarchy,	and
between	the	system	and	the	rest	of	the	computer.	Second,	one	or	more	instruction
interpretation	units	which	prepare	instructions	for	execution	and	control	their	execution.
Third,	one	or	more	execution	units	responsible	for	the	actual	execution	of	the	various
classes	of	instructions	demanded	in	a	computation.	(Collectively,	the	instruction
interpretation	system(s)	and	execution	unit(s)	are	called	the	computer’s	processor.)
Fourth,	a	communication	network	that	serve	to	transfer	symbol	structures	between	the
other	functional	components.	Fifth,	an	input/output	system	responsible	for	receiving
symbol	structures	from,	and	sending	symbol	structures	to,	the	physical	computer’s
environment.	And	finally,	the	control	unit	which	is	responsible	for	issuing	signals	that

control	the	activities	of	the	other	components.

5.	Portrait	of	a	computer’s	inner	architecture.

The	execution	units	are	rather	like	the	organs	of	a	living	body.	They	can	be	highly
specialized	for	operations	of	specific	sorts	on	specific	data	types,	or	more	general	purpose
units	capable	of	performing	comprehensive	sets	of	operations.	For	example,	one	execution
unit	may	be	dedicated	to	performing	only	integer	arithmetic	operations	while	another	is
specialized	for	arithmetic	operations	on	real	numbers;	a	third	only	manipulates	bit	strings
in	various	ways;	another	does	operations	on	character	strings,	and	so	on.

Internally,	a	processor	will	have	its	own	dedicated,	extremely	short-term	or	transient,
memory	elements	(of	shorter	term	retentivity	than	the	registers	visible	in	the	outer
architecture,	and	sometimes	called	‘buffer	registers’)	to	which	information	must	be
brought	from	other	memories	before	instructions	can	be	actually	processed	by	the
instruction	interpretation	or	processing	units.	Such	buffer	registers	form	the	‘lowest’	level
in	the	memory	hierarchy	visible	in	the	inner	architecture.

There	is	yet	another	component	of	the	memory	hierarchy	visible	in	the	inner	architecture
but	(usually)	abstracted	away	in	the	outer	architecture.	This	is	a	memory	element	called
cache	memory	that	lies	between	the	medium-term	(main)	memory	and	the	very	short-term
(register)	memory.	In	Figure	5,	this	is	shown	as	‘short-term	memory’.	Its	capacity	and
speed	of	access	lie	between	the	two.	The	basic	idea	of	a	cache	is	that	since	instructions
within	a	program	module	execute	(usually)	in	sequence,	a	chunk	of	instructions	can	be
placed	in	the	cache	so	that	instructions	can	be	accessed	more	rapidly	than	if	main	memory
is	accessed.	Likewise,	the	nature	of	program	behaviour	is	such	that	data	is	also	often
accessed	from	sequential	addresses	in	main	memory	so	data	chunks	may	also	be	placed	in
a	cache.	Only	when	the	relevant	instruction	or	data	object	is	not	found	in	the	cache,	will
main	memory	be	accessed,	and	this	will	cause	a	chunk	of	information	in	the	cache	to	be
replaced	by	the	new	chunk	in	which	the	relevant	information	is	located	so	that	future
references	to	instructions	and	data	will	be	available	in	the	cache.

‘The	computer-within-the	computer’
So	how	can	we	connect	the	outer	to	the	inner	architecture?	How	do	they	actually	relate?
To	understand	this	we	need	to	understand	the	function	of	the	control	unit	(which,	in	Figure
5	stands	in	splendid	black	box-like	isolation).

The	control	unit	is,	metaphorically,	the	computer’s	brain,	a	kind	of	homunculus,	and	is
sometimes	described	as	a	‘computer-within-the-computer’.	It	is	the	organ	which	manages,
controls,	and	sequences	all	the	activities	of	the	other	systems,	and	the	movement	of
symbol	structures	between	them.	It	does	so	by	issuing	control	signals	(symbol	structures
that	are	categorically	distinct	from	instructions	and	data)	to	other	parts	of	the	machine	as
and	when	required.	It	is	the	puppeteer	that	pulls	the	strings	to	activate	the	other	puppet-
like	systems.

In	particular,	the	control	unit	issues	signals	to	the	processor	(the	combination	of	the
instruction	interpretation	and	execution	units)	to	cause	a	repetitive	algorithm	usually
called	the	instruction	cycle	(ICycle	for	short)	to	be	executed	by	the	processor.	It	is	the
ICycle	which	ties	the	outer	to	the	inner	architecture.	The	general	form	of	this	is	as	follows:

ICYCLE:

Input:	main-memory:	medium-term	memory;	registers:	short-term	memory;

Internal:	pc:	transient	buffer;	ir:	transient	buffer;	or:	transient	buffer

{pc,	short	for	‘program	counter’,	holds	the	address	of	the	next	instruction	to	be	executed;	ir,	‘instruction
register’,	holds	the	current	instruction	to	be	executed;	or	will	hold	the	values	of	the	operands	of	an	instruction}.

FETCH	INSTRUCTION:	Using	value	of	pc	transfer	instruction	from	main-memory	to	ir	(ir	←	main-memory
[pc])

DECODE	the	operation	part	of	instruction	in	ir;

CALCULATE	OPERAND	ADDRESSES:	decode	the	address	modes	of	operands	in	instruction	in	ir	and
determine	the	effective	addresses	of	operands	and	result	locations	in	main-memory	or	registers.

FETCH	OPERANDS	from	memory	system	into	or.

EXECUTE	the	operation	specified	in	the	instruction	in	ir	using	the	operand	values	in	or	as	inputs.

STORE	result	of	the	operation	in	the	destination	location	for	result	specified	in	ir.

UPDATE	PC:	if	the	operation	performed	in	EXECUTE	is	not	a	goto	type	operation	then	pc	←	pc	+	1.
Otherwise	do	nothing:	EXECUTE	will	have	placed	the	address	of	the	target	goto	instruction	in	ir	into	pc.

The	ICycle	is	controlled	by	the	control	unit	but	it	is	the	instruction	interpretation	unit	that
performs	the	FETCH	INSTRUCTION	through	FETCH	OPERANDS	steps	of	the	ICycle,
and	then	the	STORE	and	UPDATE	steps,	and	an	execution	unit	will	perform	the
EXECUTE	step.	As	a	specific	example	consider	the	LOAD	instruction	described	earlier:

LOAD	R2,	(R1,	D)

Notice	that	the	semantics	of	this	instruction	at	the	outer	architectural	level	is	simply
R2	←	Main-memory	[R1	+	D]

At	the	inner	architectural	level,	its	execution	entails	the	performance	of	the	ICycle.	The
instruction	is	FETCHed	into	ir,	it	is	DECODEd,	the	operand	addresses	are
CALCULATEd,	the	operands	are	FETCHed,	the	instruction	is	EXECUTEd,	and	the	result
STOREd	into	register	R2.	All	these	steps	of	the	ICycle	are	abstracted	out	in	the	outer
architecture	as	unnecessary	detail	as	far	as	the	users	of	the	outer	architecture	(the	system
programmers)	are	concerned.

Microprogramming
To	repeat,	the	ICycle	is	an	algorithm	whose	steps	are	under	the	control	of	the	control	unit.
In	fact,	one	might	grasp	easily	that	this	algorithm	can	be	implemented	as	a	program
executed	by	the	control	unit	with	the	rest	of	the	computer	(the	memory	system,	the
instruction	interpretation	unit,	the	execution	units,	the	communication	pathways,	the
input/output	system)	as	part	of	the	‘program’s’	environment.	This	insight,	and	the	design
of	the	architecture	of	the	control	unit	based	on	this	insight,	was	named	microprogramming
by	its	inventor,	British	computer	pioneer	Maurice	Wilkes.	And	it	is	in	the	sense	that	the
microprogrammed	control	unit	executes	a	microprogram	that	implements	the	ICycle	for
each	distinct	type	of	instruction	that	led	some	to	call	the	microprogrammed	control	unit
the	computer-within-the-computer.	In	fact,	the	architecture	of	the	computer	as	the
microprogrammer	sees	it	is	necessarily	more	refined	than	the	inner	architecture	indicated
in	Figure	5.	This	microprogrammer’s	(or	control	unit	implementer’s)	view	of	the	computer
is	the	‘microarchitecture’	mentioned	earlier.

Parallel	computing
It	is	in	the	nature	of	those	who	make	artefacts	(‘artificers’)—engineers,	artists,
craftspeople,	writers,	etc.—to	be	never	satisfied	with	what	they	have	made;	they	desire	to
constantly	make	better	artefacts	(whatever	the	criterion	of	‘betterness’	is).	In	the	realm	of
physical	computers	the	two	dominant	desiderata	are	space	and	time:	to	make	smaller	and
faster	machines.

One	strategy	for	achieving	these	goals	is	by	way	of	improving	physical	technology.	This	is
a	matter	of	solid	state	physics,	electronics,	fabrication	technology,	and	circuit	design.	The
extraordinary	progress	over	the	sixty	or	so	years	since	the	integrated	circuit	was	first
created,	producing	increasingly	denser	and	increasingly	smaller	components	and	the
concentration	of	ever	increasing	computing	power	in	such	components	is	evident	to	all
who	use	laptops,	tablets,	and	smart	phones.	There	is	a	celebrated	conjecture—called
Moore’s	law,	after	its	inventor,	American	engineer	Gordon	Moore—that	the	density	of
basic	circuit	components	on	a	single	chip	doubles	approximately	every	two	years,	which
has	been	empirically	borne	out	over	the	years.

But	given	a	particular	state	of	the	art	of	physical	technology,	computer	architects	have
evolved	techniques	to	increase	the	throughput	or	speedup	of	computations,	measured,	for
example,	by	such	metrics	as	the	number	of	instructions	processed	per	unit	time	or	the
number	of	some	critical	operations	(such	as	real	number	arithmetic	operations	in	the	case
of	a	computer	dedicated	to	scientific	or	engineering	computations)	per	unit	time.	These
architectural	strategies	fall	under	the	rubric	of	parallel	processing.

The	basic	idea	is	quite	straightforward.	Two	processes	or	tasks,	T1,	T2	are	said	to	be
executable	in	parallel	if	they	occur	in	a	sequential	task	stream	(such	as	instructions	in	a
sequential	program)	and	are	mutually	independent.	This	mutual	independence	is	achieved
if	they	satisfy	some	particular	conditions.	The	exact	nature	and	complexity	of	the
conditions	will	depend	on	several	factors,	specifically:
(a)	The	nature	of	the	tasks.

(b)	The	structure	of	the	task	stream,	e.g.	whether	it	contains	iterations	(while	do	types	of	tasks),	conditionals	(if	then
elses)	or	gotos.

(c)	The	nature	of	the	units	that	execute	the	tasks.

Consider,	for	example,	the	situation	in	which	two	identical	processors	share	a	memory
system.	We	want	to	know	under	what	conditions	two	tasks	T1,	T2	appearing	in	a
sequential	task	stream	can	be	initiated	in	parallel.

Suppose	the	set	of	input	data	objects	to	and	the	set	of	output	data	objects	from	T1	are
designated	as	INPUT1	and	OUTPUT1	respectively.	Likewise,	for	T2,	we	have	INPUT2
and	OUTPUT2	respectively.	Assume	that	these	inputs	and	outputs	are	locations	in	main
memory	and/or	registers.	Then	T1	and	T2	can	be	executed	in	parallel	(symbolized	as	T1	||
T2)	if	all	the	following	conditions	are	satisfied:
(a)	INPUT1	and	OUTPUT2	are	independent.	(That	is,	they	have	nothing	in	common.)

(b)	INPUT2	and	OUTPUT1	are	independent.

(c)	OUTPUT1	and	OUTPUT	2	are	independent.

These	are	known	as	Bernstein’s	conditions	after	the	computer	scientist	A.J.	Bernstein,	who

first	formalized	them.	If	any	one	of	the	three	conditions	are	not	met,	then	there	is	a	data
dependency	relation	between	them,	and	the	tasks	cannot	be	executed	in	parallel.	Consider,
as	a	simple	example,	a	segment	of	a	program	stream	consisting	of	the	following
assignment	statements
[1]	A	←	B	+	C;

[2]	D	←	B	*	F/E;

[3]	X	←	A	–	D;

[4]	W	←	B	–	F.

Thus:
INPUT1	=	{B,	C},	OUTPUT1	=	{A}

INPUT2	=	{B,	E,	F},	OUTPUT2	=	{D}

INPUT3	=	{A,	D},	OUTPUT3	=	{X}

INPUT4	=	{B,	F},	OUTPUT4	=	{W}

Applying	Bernstein’s	condition,	it	can	be	seen	that	(i)	statements	[1]	and	[2]	can	be
executed	in	parallel;	(ii)	statements	[3]	and	[4]	can	be	executed	in	parallel;	however,	(iii)
statements	[1]	and	[3]	have	a	data	dependency	(variable	A);	(iv)	statements	[2]	and	[3]
have	a	data	dependency	constraint	(variable	D);	thus	these	pairs	cannot	be	executed	in
parallel.

So,	in	effect,	taking	these	parallel	and	non-parallel	conditions	into	account,	and	assuming
that	there	are	enough	processors	that	can	execute	parallel	statements	simultaneously,	the
actual	ordering	of	execution	of	the	statements	would	be:

Statements	[1]	||	Statement	[2];

Statement	[3]	||	Statement	[4].

This	sequential/parallel	ordering	illustrates	the	structure	of	a	parallel	program	in	which
the	tasks	are	individual	statements	described	using	a	programming	language.	But	consider
the	physical	computer	itself.	The	goal	of	research	in	parallel	processing	is	broadly
twofold:	(a)	Inventing	algorithms	or	strategies	that	can	detect	parallelism	between	tasks
and	schedule	or	assign	parallel	tasks	to	different	task	execution	units	in	a	computer
system.	(b)	Designing	computers	that	support	parallel	processing.

From	a	computer	architect’s	perspective	the	potential	for	parallelism	exists	at	several
levels	of	abstraction.	Some	of	these	levels	of	parallelism	are:
(1)	Task	(or	instruction)	streams	executing	concurrently	on	independent	data	streams,	on	distinct,	multiple	processors	but

with	the	task	streams	communicating	with	one	another	(for	example,	by	passing	messages	to	one	another	or
transmitting	data	to	one	another).

(2)	Task	(or	instruction)	streams	executing	concurrently	on	a	single	shared	data	stream,	on	multiple	processors	within	a
single	computer.

(3)	Multiple	data	streams	occupying	multiple	memory	units,	accessed	concurrently	by	a	single	task	(instruction)	stream
executing	on	a	single	processor.

(4)	Segments	(called	‘threads’)	of	a	single	task	stream,	executing	concurrently	on	either	a	single	processor	or	multiple
processors.

(5)	The	stages	or	steps	of	a	single	instruction	executing	concurrently	within	the	ICycle.

(6)	Parts	of	a	microprogram	executed	concurrently	within	a	computer’s	control	unit.

All	parallel	processing	architectures	exploit	variations	of	the	possibilities	just	discussed,
often	in	combination.

Consider,	as	an	example,	the	abstraction	level	(5)	given	earlier.	Here,	the	idea	is	that	since
the	ICycle	consists	of	several	stages	(from	FETCH	INSTRUCTION	to	UPDATE	pc),	the
processor	itself	that	executes	the	ICycle	can	be	organized	in	the	form	of	a	pipeline
consisting	of	these	many	stages.	A	single	instruction	will	go	through	all	the	stages	of	the
pipeline	in	sequential	fashion.	The	‘tasks’	at	this	level	of	abstraction	are	the	steps	of	the
ICycle	through	which	an	instruction	moves.	However,	when	an	instruction	occupies	one	of
the	stages,	the	other	stages	are	free	and	they	can	be	processing	the	relevant	stages	of	other
instructions	in	the	instruction	stream.	Ideally,	a	seven-step	ICycle	can	be	executed	by	a
seven-stage	instruction	processor	pipeline,	and	all	the	stages	of	the	pipeline	are	busy,
working	on	seven	different	instructions	in	parallel,	in	an	assembly	line	fashion.	This,	of
course,	is	the	ideal	condition.	In	practice,	Bernstein’s	conditions	may	be	violated	by
instruction	pairs	in	the	instruction	stream	and	so	the	pipeline	may	have	stages	that	are
‘empty’	because	of	data	dependency	constraints	between	stages	of	instruction	pairs.

Architectures	that	support	this	type	of	parallel	processing	are	called	pipelined	architectures
(Figure	6).

As	another	example,	consider	tasks	at	abstraction	level	(1)	presented	earlier.	Here,
multiple	processors	(also	called	‘cores’)—within	the	same	computer—execute	instruction
streams	(belonging	to,	say,	distinct	program	modules)	in	parallel.	These	processors	may	be
accessing	a	single	shared	memory	system	or	the	memory	system	itself	may	be
decomposed	into	distinct	memory	modules.	At	any	rate,	a	sophisticated	‘processor-
memory	interconnection	network’	(or	‘switch’)	will	serve	as	the	interface	between	the
memory	systems	and	the	processors	(Figure	7).	Such	schemes	are	called	multiprocessor
architectures.

6.	An	instruction	pipeline.

As	mentioned	before,	the	objective	of	parallel	processing	architectures	is	to	increase	the
throughput	or	speedup	of	a	computer	system	through	purely	architectural	means.
However,	as	the	small	example	of	the	four	assignment	statements	illustrated,	there	are
limits	to	the	‘parallelization’	of	a	task	stream	because	of	data	dependency	constraints;	thus,
there	are	limits	to	the	speedup	that	can	be	attained	in	a	parallel	processing	environment.
This	limit	was	quantitatively	formulated	in	the	1960s	by	computer	designer	Gene	Amdahl,
who	stated	that	the	potential	speedup	of	a	parallel	processing	computer	is	limited	by	that
part	of	the	computation	that	cannot	be	parallelized.	Thus	the	speedup	effect	of	increasing
the	number	of	parallel	execution	units	levels	off	after	a	certain	point.	This	principle	is
called	Amdahl’s	law.

7.	Portrait	of	a	multiprocessor.

The	science	in	computer	architecture
The	reader	having	reached	this	section	of	the	chapter	may	well	ask:	granted	that	computer
architectures	are	liminal	artefacts,	in	what	sense	is	the	discipline	a	science	of	the	artificial?

To	answer	this	question	we	must	recognize	that	the	most	striking	aspect	of	the	discipline	is
that	its	knowledge	space	consists	(mainly)	of	a	body	of	heuristic	principles,	and	the	kind
of	reasoning	used	in	designing	computer	architectures	is	heuristic	reasoning.

Heuristics—from	the	Greek	word	hurisko,	‘to	find’—are	rules	or	propositions	that	offer
hope	or	promise	of	solutions	to	certain	kinds	of	problems	(discussed	in	the	next	chapter)
but	there	is	no	guarantee	of	success.	To	paraphrase	Hungarian-American	mathematician
George	Polya	who	famously	recognized	the	role	of	heuristics	in	mathematical	discovery,
heuristic	thinking	is	never	definite,	never	final,	never	certain;	rather,	it	is	provisional,
plausible,	tentative.

We	are	often	obliged	to	use	heuristics	because	we	may	not	have	any	other	option.
Heuristics	are	invoked	in	the	absence	of	more	formal,	more	certain,	theory-based
principles.	The	divide-and-conquer	principle	discussed	in	Chapter	3	is	an	example	of	an
ubiquitous	heuristic	used	in	problem	solving	and	decision	making.	It	is	a	plausible
principle	which	might	be	expected	to	help	solve	a	complex	problem	but	is	not	guaranteed
to	succeed	in	a	particular	case.	Experiential	knowledge	is	the	source	of	many	heuristics.
The	rule	‘if	it	is	cloudy,	take	an	umbrella’	is	an	example.	The	umbrella	may	well	be
justified	but	not	always.

The	use	of	heuristics	brings	with	it	the	necessity	of	experiment.	Since	heuristics	are	not
assured	of	success	the	only	recourse	is	to	apply	them	to	a	particular	problem	and	see
empirically	if	it	works;	that	is,	conduct	an	experiment.	Conversely,	heuristic	principles
may	themselves	be	derived	based	on	prior	experiments.	Heuristics	and	experiments	go
hand	in	hand,	an	insight	such	pioneers	in	heuristic	thinking	as	Allen	Newell	and	Herbert
Simon,	and	pioneers	of	computer	design	such	as	Maurice	Wilkes	fully	grasped.

All	this	is	a	prelude	to	the	following:	The	discipline	of	computer	architecture	is	an
experimental,	heuristic	science	of	the	artificial.

Over	the	decades	since	the	advent	of	the	electronic	digital	computer,	a	body	of	rules,
principles,	precepts,	propositions,	and	schemas	have	come	into	being	concerning	the
design	of	computer	architectures,	almost	all	of	which	are	heuristic	in	nature.	The	idea	of	a
memory	hierarchy	as	a	design	principle	is	an	example.	The	principle	of	pipelining	is
another.	They	arise	from	experiential	knowledge,	drawing	analogies,	and	common	sense
observations.

For	example,	experiences	with	prior	architecture	design	and	the	difficulties	faced	in
producing	machine	code	using	compilers	have	yielded	heuristic	principles	to	eliminate	the
difficulties.	In	the	1980s,	the	computer	scientist	William	Wulf	proposed	several	such
heuristics	based	on	experience	with	the	design	of	compilers	for	certain	computers.	Here
are	some	of	them:

Regularity.	If	a	particular	(architectural)	feature	is	realized	in	a	certain	way	in	one	part	of	the	architecture	then	it
should	be	realized	in	the	same	way	in	all	parts.

Separation	of	concerns.	(Divide	and	rule.)	The	overall	architecture	should	be	partitionable	into	a	number	of
independent	features,	each	of	which	can	be	designed	separately.

Composability.	By	virtue	of	the	two	foregoing	principles	it	should	be	possible	to	compose	the	separate
independent	features	in	arbitrary	ways.

But	experiments	must	follow	the	incorporation	of	heuristic	principles	into	a	design.	Such
experiments	may	entail	implementing	a	‘prototype’	or	experimental	machine	and
conducting	tests	on	it.	Or	it	may	involve	constructing	a	(software)	simulation	model	of	the
architecture	and	conducting	experiments	on	the	simulated	architecture.

In	either	case	the	experiments	may	reveal	flaws	in	the	design,	in	which	case	the	outcome
would	be	to	modify	the	design	by	rejecting	some	principles	and	inserting	others;	and	then
repeat	the	cycle	of	experimentation,	evaluation,	and	modification.

This	schema	is,	of	course,	almost	identical	to	the	model	of	scientific	problem	solving
advanced	by	philosopher	of	science	Karl	Popper:

Here,	P1	is	the	‘current’	problem	situation;	TT	is	a	tentative	theory	advanced	to	explain	or
solve	the	problem	situation;	EE	is	the	process	of	error	elimination	applied	to	TT	(by	way
of	experiments	and/or	critical	reasoning);	and	P2	is	the	resulting	new	problem	situation
after	the	errors	have	been	eliminated.	In	the	context	of	computer	architecture,	P1	is	the
design	problem,	specified	in	terms	of	goals	and	requirements	the	eventual	computer	must
satisfy;	TT	is	the	heuristics-based	design	itself	(which	is	a	theory	of	the	computer);	EE	is
the	process	of	experimentation	and	evaluation	of	the	design,	and	the	elimination	of	its
flaws	and	limitations;	and	the	outcome	P2	is	a	possibly	modified	set	of	goals	and
requirements	constituting	a	new	design	problem.

Chapter	6
Heuristic	computing

Many	problems	are	not	conducive	to	algorithmic	solutions.	A	parent	teaching	her	child	to
ride	a	bicycle	cannot	present	to	the	child	an	algorithm	he	can	learn	and	apply	in	the	way
he	can	learn	how	to	multiply	two	numbers.	A	teacher	of	creative	writing	or	of	painting
cannot	offer	students	algorithms	for	writing	magical	realist	fiction	or	painting	abstract
expressionist	canvases.

This	inability	is	in	part	because	of	one’s	ignorance	(even	that	of	a	professor	of	creative
writing)	or	lack	of	understanding	of	the	exact	nature	of	such	tasks.	The	painter	wants	to
capture	the	texture	of	a	velvet	gown,	the	solidity	of	an	apple,	the	enigma	of	a	smile.	But
what	constitutes	that	velvetiness,	that	solidity,	that	enigmatic	smile	from	a	painterly
perspective	may	be	unknown	or	not	known	exactly	enough	for	an	algorithm	to	be	invented
for	capturing	them	in	a	picture.	Indeed,	some	would	say	that	artistic,	literary,	or	musical
creativity	can	never	be	explicable	in	terms	of	algorithms.

Secondly,	an	algorithm	exposes	each	and	every	step	that	must	be	followed.	We	can	only
construct	an	algorithm	if	its	constitutive	steps	are	in	our	conscious	awareness.	But	so
many	of	the	actions	we	perform	in	riding	a	bicycle	or	grasping	the	nuances	of	a	scene	we
wish	to	paint	occur	in	what	cognitive	scientists	call	the	‘cognitive	unconscious’.	There	are
limits	to	the	extent	such	unconscious	acts	can	be	raised	to	the	surface	of	consciousness.

Thirdly,	even	if	we	understand	the	nature	of	the	task	(reasonably)	well,	the	task	may
involve	multiple	variables	or	parameters	that	interact	with	one	another	in	nontrivial	ways.
Our	knowledge	or	understanding	of	these	interactions	may	be	imperfect,	incomplete,	or
hopelessly	inadequate.	The	problem	of	designing	a	computer’s	outer	architecture	(see
Chapter	5),	for	example,	manifests	this	characteristic.	The	architect	may	well	understand
the	actual	parts	that	will	go	into	an	outer	architecture	(data	types,	operations,	memory
system,	operand	addressing	modes,	instruction	formats,	word	length),	but	the	range	of
variations	for	each	such	part,	and	the	influences	of	these	variations	upon	one	another	may
be	only	inexactly	or	vaguely	understood.	Indeed,	comprehending	the	full	nature	of	these
interactions	may	well	exceed	the	architect’s	cognitive	capacity.

Fourthly,	even	if	one	understands	the	problem	well	enough,	and	possesses	knowledge
about	the	problem	domain,	and	can	construct	an	algorithm	to	solve	the	problem,	the
amount	of	computational	resources	(time	or	space)	needed	to	execute	the	algorithm	may
be	simply	infeasible.	Algorithms	of	exponential	time	complexity	(see	Chapter	3)	are
examples.

Playing	the	game	of	chess	is	a	case	in	point.	The	nature	of	the	problem	is	very	well
understood.	It	has	precise	rules	for	legal	moves,	and	is	a	game	of	‘perfect	information’	in
the	sense	that	each	player	can	see	all	the	pieces	on	the	board	at	each	point	of	time.	The
possible	outcomes	are	precisely	defined:	White	wins,	Black	wins,	or	they	draw.

But	consider	the	player’s	dilemma.	Whenever	it	is	his	turn	to	play,	his	ideal	objective	is	to
choose	a	move	that	will	lead	to	a	win.	In	principle	there	is	an	optimum	strategy
(algorithm)	the	chess	player	can	follow:

The	player	whose	turn	it	is	to	make	the	move	considers	all	possible	moves	for	himself.	For	each	such	move	he
then	considers	all	possible	moves	for	the	opponent;	and	for	each	of	his	opponent’s	possible	moves,	he	considers
again	all	his	possible	moves;	and	so	on	until	an	end	state	is	reached:	a	win,	a	loss,	or	a	draw.	Then	working
backwards,	the	player	determines	whether	the	current	position	would	force	a	win,	and	selects	a	move
accordingly,	assuming	the	opponent	makes	her	moves	most	favourable	to	her.

This	is	called	‘exhaustive	search’	or	the	‘brute	force’	method.	In	principle	it	will	work.	But
of	course,	it	is	impractical.	It	has	been	estimated	that	in	typical	board	configurations	there
are	about	thirty	possible	legal	moves.	Assume	that	a	typical	game	lasts	about	forty	moves
before	resignation	by	one	of	the	players.	Then	beginning	at	the	beginning,	a	player	must
consider	thirty	possible	next	moves;	for	each	of	these,	there	are	thirty	possible	moves	for
the	opponent,	that	is,	302	possibilities	in	the	second	move;	for	each	of	these	302	choices
there	are	another	thirty	alternatives	in	the	third	move,	that	is,	303	possibilities.	And	so	on
until	in	the	fortieth	move	the	number	of	possibilities	is	3040.	So	at	the	very	beginning,	a
player	will	have	to	consider	30	+	302	+	303	+	304	+	…	+	3040	alternative	moves	before
making	an	‘optimum’	move.	The	space	of	alternative	pathways	is	astronomically	large.

Ultimately,	if	an	algorithm	is	to	be	constructed	to	solve	a	problem,	whatever	knowledge	is
required	about	the	problem	for	the	algorithm	to	work	must	be	entirely	embedded	in	the
algorithm.	As	we	have	noted	in	Chapter	3,	an	algorithm	is	a	self-contained	piece	of
procedural	knowledge.	To	do	a	litmus	test,	perform	a	paper-and-pencil	multiplication,
evaluate	the	factorial	of	a	number,	generate	reverse	Polish	expressions	from	infix
arithmetic	expressions	(see	Chapter	4)—all	one	needs	to	know	is	the	algorithm	itself.	If
one	cannot	incorporate	any	and	all	the	necessary	knowledge	into	the	algorithm,	there	is	no
algorithm.

The	world	is	full	of	tasks	or	problems	manifesting	the	kinds	of	characteristics	just
mentioned.	They	include	not	just	intellectual	and	creative	work—scientific	research,
invention,	designing,	creative	writing,	mathematical	work,	literary	analysis,	historical
research—but	also	the	kinds	of	tasks	professional	practitioners—doctors,	architects,
engineers,	industrial	designers,	planners,	teachers,	craftspeople—do.	Even	ordinary,
humdrum	activities—driving	through	a	busy	thoroughfare,	making	a	decision	about	a	job
offer,	planning	a	holiday	trip—are	not	conducive	to	algorithmic	solutions,	or	at	least	to
efficient	algorithmic	solutions.

And	yet,	people	go	about	performing	these	tasks	and	solving	such	problems.	They	do	not
wait	for	algorithms,	efficient	or	otherwise.	Indeed,	if	we	had	to	wait	for	algorithms	to
solve	any	or	all	our	problems	then	we,	as	a	species,	would	have	long	been	extinct.	From
an	evolutionary	point	of	view,	algorithms	are	not	all	there	is	to	our	ways	of	thinking.	And
so	the	question	arises:	what	other	computational	means	are	at	our	disposal	to	perform	such
tasks?	The	answer	is	to	resort	to	a	mode	of	computing	that	deploys	heuristics.

Heuristics	are	rules,	precepts,	principles,	hypotheses	based	on	common	sense,	experience,
judgement,	analogies,	informed	guesses,	etc.,	that	offer	promise	but	are	not	guaranteed	to
solve	problems.	We	encountered	heuristics	in	the	last	chapter	in	the	discussion	of
computer	architecture.	However,	to	speak	of	computer	architecture	as	a	heuristics-based
science	of	the	artificial	is	one	thing;	to	deploy	heuristics	in	automatic	computation	is
another.	It	is	this	latter,	heuristic	computing,	that	we	now	consider.

Search	and	ye	may	find
Heuristic	computing	embodies	a	spirit	of	adventure!	There	is	an	element	of	uncertainty
and	the	unknown	in	heuristic	computing.	A	problem	solving	agent	(a	human	being	or	a
computer)	looking	for	a	heuristic	solution	to	a	problem	is,	in	effect,	in	a	kind	of	terra
incognita.	And	just	as	someone	in	an	unknown	physical	territory	goes	into	exploration	or
search	mode	so	also	the	heuristic	agent:	he,	she,	or	it	searches	for	a	solution	to	the
problem,	in	what	computer	scientists	call	a	problem	space,	never	quite	sure	that	a	solution
will	obtain.	Thus	one	kind	of	heuristic	computing	is	also	called	heuristic	search.

Consider,	for	example,	the	following	scenario.	You	are	entering	a	very	large	parking	area
attached	to	an	auditorium	where	you	wish	to	watch	an	event.	The	problem	is	to	find	a
parking	space.	Cars	are	already	parked	there	but	you	obviously	have	no	knowledge	of	the
distribution	or	location	of	empty	spots.	So	what	does	one	do?

In	this	case,	the	parking	area	is,	literally,	the	problem	space.	And	all	you	can	do	is,
literally,	search	for	an	empty	spot.	But	rather	than	searching	aimlessly	or	randomly,	you
may	decide	to	adopt	a	‘first	fit’	policy:	pull	into	the	first	available	empty	spot	you
encounter.	Or	you	may	adopt	a	‘best	fit’	policy:	find	an	empty	spot	that	is	the	nearest	to
the	auditorium.

These	are	heuristics	that	help	direct	the	search	through	the	problem	space.	There	are
tradeoffs,	of	course:	the	first	fit	strategy	may	reduce	the	search	time	but	you	may	have	to
walk	a	long	way	to	reach	the	auditorium;	the	best	fit	may	demand	a	much	longer	search
time,	but	if	successful,	the	walk	time	may	be	relatively	short.	But,	of	course,	neither
heuristic	guarantees	success:	neither	is	algorithmic	in	this	sense.	In	both	cases	there	may
be	no	empty	slot	found,	in	which	case	you	may	either	search	indefinitely	or	you	terminate
the	search	by	using	a	separate	criterion,	for	example,	‘exit	if	the	search	time	exceeds	a
limit’.

Many	strategies,	however,	that	deploy	heuristics	have	all	the	characteristics	of	an
algorithm	(as	we	discussed	in	Chapter	3)—with	one	notable	difference:	they	give	only
‘nearly	right’	answers	for	a	problem,	or	they	may	only	give	correct	answers	to	some
instances	of	the	problem.	Computer	scientists,	thus,	refer	to	some	kinds	of	heuristic
problem	solving	techniques	as	heuristic	or	approximate	algorithms,	in	which	case	we	may
need	to	distinguish	them	from	what	we	may	call	exact	algorithms.	The	term	‘heuristic
computing’	encompasses	both	heuristic	search	and	heuristic	algorithms.	An	instance	of	the
latter	is	presented	shortly.

A	meta-heuristic	called	‘satisficing’
Typically,	in	an	optimization	problem,	the	objective	is	to	find	the	best	possible	solution	to
the	problem.	Many	optimization	problems	have	exact	algorithmic	solutions.
Unfortunately,	these	algorithms	are	very	often	of	exponential	time	complexity	and	so,
impractical,	even	infeasible,	to	use	for	large	instances	of	the	problem.	The	chess	problem
considered	earlier	is	an	example.	So	what	does	a	problem	solver	do,	if	optimal	algorithms
are	computationally	infeasible?

Instead	of	stubbornly	pursuing	the	goal	of	optimality,	the	agent	may	aspire	to	achieve
more	feasible	or	‘reasonable’	goals	that	are	less	than	optimal	but	are	‘acceptably	good’.	If
a	solution	is	obtained	that	meets	this	aspiration	level	then	the	problem	solver	is	satisfied.
Herbert	Simon	coined	a	term	for	this	kind	of	mentality:	satisficing.	To	satisfice	is	a	more
modest	ambition	than	to	optimize;	it	is	to	choose	the	feasible	good	over	the	infeasible	best.

The	satisficing	principle	is	a	very	high	level,	very	general,	heuristic	which	can	serve	as	a
springboard	for	identifying	more	domain-specific	heuristics.	We	may	well	call	it	a	‘meta-
heuristic’.

A	chess-related	satisficing	heuristic.	Consider	the	chess	player’s	dilemma.	As	we	have
seen,	optimal	search	is	ruled	out.	More	practical	strategies	are	required,	demanding	the	use
of	chess-related	(domain-specific)	heuristic	principles.	Among	the	simplest	is	the
following.

Consider	a	chess	board	configuration	(the	positions	of	all	the	pieces	currently	on	the
board)	C.	Evaluate	the	‘promise’	of	C	using	some	‘goodness’	measure	G(C)	which	takes
into	account	the	general	characteristics	of	C	(the	number	and	kinds	of	chess	pieces,	their
relative	positions,	etc.).

Suppose	M1,	M2,	…	,	Mn	are	the	moves	that	can	be	made	by	a	player	in	configuration	C,
and	suppose	the	resulting	configurations	after	each	such	move	is	M1C,	M2C,	etc.	Then
choose	a	move	that	maximizes	the	goodness	value	of	the	resulting	configuration.	That	is,
choose	the	Mi	whose	goodness	value	G(MiC)	is	the	highest.

Notice	that	there	is	a	kind	of	optimality	attempted	here.	But	this	is	a	‘local’	or	‘short-term’
optimization,	looking	ahead	just	one	move.	It	is	not	a	very	sophisticated	heuristic,	but	it	is
of	a	kind	that	the	casual	chess	player	may	cultivate.	But	it	does	demand	a	level	of	deep
knowledge	on	the	player’s	part	(whether	a	human	being	or	a	computer)	about	the	relative
goodness	of	board	configurations.

Chess	playing	exemplifies	instances	of	satisficing	heuristic	search.	Consider	now	an
instance	of	a	satisficing	heuristic	algorithm.

A	heuristic	algorithm
Recall	the	discussion	of	parallel	processing	in	the	last	chapter.	A	pair	of	tasks	Ti,	Tj	in	a
task	stream	(at	whatever	level	of	abstraction)	can	be	processed	in	parallel	providing
Bernstein’s	data	independency	conditions	are	satisfied.

Consider	now	a	sequential	stream	of	machine	instructions	generated	by	a	compiler	for	a
target	physical	computer	from	a	high	level	language	sequential	program	(see	Chapter	4).
If,	however,	the	target	computer	can	execute	instructions	simultaneously	then	the	compiler
has	one	more	task	to	perform:	to	identify	parallelism	between	instructions	in	the
instruction	stream	and	produce	a	parallel	instruction	stream,	where	each	element	of	this
stream	consists	of	a	set	of	instructions	that	can	be	executed	in	parallel	(call	this	a	‘parallel
set’).

This	is,	in	fact,	an	optimization	problem	if	the	goal	is	to	minimize	the	number	of	parallel
sets	in	the	parallel	instruction	stream.	An	optimizing	algorithm	would	entail,	like	the	case
of	the	chess	problem,	an	exhaustive	search	strategy	and	thus	be	computationally
impractical.

In	practice,	more	satisficing	heuristics	are	applied.	An	example	is	what	I	will	call	here	the
‘First	Come,	First	Serve’	(FCFS)	algorithm.

Consider	the	following	sequential	instruction	stream	S.	(For	simplicity,	there	are	no
iterations	or	gotos	in	this	example.)
I1:	A	←	B;

I2:	C	←	D	+	E;

I3:	B	←	E	+	F	–	1/W;

I4:	Z	←	C	+	Q;

I5:	D	←	A/X;

I6:	R	←	B	–	Q;

I7:	S	←	D	*	Z.

The	FCFS	algorithm	is	as	follows.

FCFS:
Input:	A	straight	line	sequential	instruction	stream	S:	<	I1,	I2,…,	In>;

Output:	A	straight	line	parallel	instruction	stream	P	consisting	of	a	sequence	of	parallel	sets	of	instructions	each
and	every	one	of	which	are	present	in	S.

For	each	successive	instruction	I	in	S	starting	with	I1	and	ending	with	In,	place	I	in	the
earliest	possible	existing	parallel	set	subject	to	Bernstein’s	data	independency	conditions.
If	this	is	not	possible—because	of	data	dependency	precluding	placing	I	in	any	of	the
existing	parallel	sets—a	new	(empty)	parallel	set	is	created	after	the	existing	ones	and	I	is
placed	there.

When	this	FCFS	algorithm	is	applied	to	the	earlier	example	it	can	be	seen	that	the	output
is	the	parallel	instruction	stream	P:
I1	||	I2;

I3	||	I4	||	I5;

I6	||	I7.

Here,	‘||’	symbolizes	parallel	processing,	and	‘;’	sequential	processing.	This	is,	then,	a
parallel	stream	of	three	parallel	sets	of	instructions.

FCFS	is	a	satisficing	strategy.	It	places	each	instruction	in	the	earliest	possible	parallel	set
so	that	succeeding	data	dependent	instructions	can	also	appear	as	early	as	possible	in	the
parallel	stream.	The	satisficing	criterion	is:	‘Examine	each	instruction	on	its	own	merit
relative	to	its	predecessors	and	ignore	what	follows’.	For	this	particular	example,	FCFS
produces	an	optimal	output	(a	minimal	sequence	of	parallel	sets).	However,	there	may
well	be	other	input	streams	for	which	FCFS	will	produce	suboptimal	parallel	sets.

So,	what	is	the	difference	between	exact	and	heuristic	algorithms?	In	the	former	case	the
‘goodness’	is	judged	by	evaluating	its	time	(or	space)	complexity.	There	is	no	surprise	or
uncertainty	attached	to	the	outputs.	Two	or	more	exact	algorithms	for	the	same	task	(such
as	to	solve	systems	of	algebraic	equations,	sort	files	of	data	in	ascending	sequence,
process	payrolls,	or	compute	the	GCD	of	two	integers,	etc.)	will	not	vary	in	their	outputs;
they	will	(or	may)	differ	only	in	their	performances	and	in	their	respective	aesthetic
appeal.	In	the	case	of	heuristic	algorithms	there	is	more	to	the	story.	The	algorithms	may
certainly	be	compared	for	their	relative	time	complexities.	(FCFS	is	an	O(n2)	algorithm
for	an	input	stream	of	size	n.)	But	they	may	also	be	compared	in	terms	of	their	outputs
since	the	outputs	may	occasion	surprise.	Two	parallelism	detection	algorithms	or	two
chess	programs	employing	different	sets	of	heuristics	may	yield	different	results.

And	how	they	differ	is	an	empirical	issue.	One	must	implement	the	algorithms	as
executable	programs,	conduct	experiments	on	various	test	data,	examine	the	outputs,	and
ascertain	their	strengths	and	weaknesses	based	on	the	experiments.	Heuristic	computing,
thus,	entails	experimentation.

Heuristics	and	artificial	intelligence
Artificial	intelligence	(AI)	is	a	branch	of	computer	science	concerned	with	the	theory,
design	and	implementation	of	computational	artefacts	that	perform	tasks	we	normally
associate	with	human	thinking:	such	artefacts	can	be	viewed	then	as	‘possessing’	artificial
intelligence.	Thus	it	provides	a	bridge	between	computer	science	and	psychology.	And
one	of	the	earliest	reflections	on	the	possibility	of	artificial	intelligence	was	due	to
electrical	engineer	Claude	Shannon	in	the	late	1940s	when	he	considered	the	idea	of
programming	a	computer	to	play	chess.	In	fact,	ever	since,	computer	chess	has	remained	a
significant	focus	in	AI	research.	However,	the	most	influential	manifesto	of	what	became
AI	(the	term	itself	was	coined	by	one	of	the	pioneers	of	the	subject,	John	McCarthy,	in	the
mid-1950s)	was	a	provocative	article	by	Alan	Turing	(of	Turing	machine	reputation)	in
1950	who	posed	and	proposed	an	answer	to	the	question:	‘What	does	it	mean	to	claim	that
a	computer	can	think?’	His	answer	involved	a	kind	of	experiment—a	‘thought
experiment’—in	which	a	human	being	asks	questions	of	two	invisible	agents	through
some	‘neutral’	communication	means	(so	that	the	interrogator	cannot	guess	the	identity	of
the	responder	from	the	means	of	response),	one	of	the	agents	being	a	person,	the	other	a
computer.	If	the	interrogator	cannot	correctly	guess	the	identity	of	the	computer	as
responder	more	than,	say	40	per	cent–50	per	cent	of	the	time	then	the	computer	may	be
regarded	as	manifesting	human-like	intelligence.	This	test	came	to	be	called	the	Turing
Test,	and	was	for	some	years	a	holy	grail	of	AI	research.

AI	is	a	vast	area	and	there	is,	in	fact,	more	than	one	paradigm	favoured	by	AI	researchers.
(I	use	the	word	‘paradigm’	in	philosopher	of	science	Thomas	Kuhn’s	sense.)	Here,
however,	to	illuminate	further	the	scope	and	power	of	heuristic	computing,	I	will	consider
only	the	heuristic	search	paradigm	in	AI.

This	paradigm	concerns	itself	with	intelligent	agents—natural	and	artificial:	humans	and
machines.	And	it	rests	on	two	hypotheses	articulated	most	explicitly	by	Allen	Newell	and
Herbert	Simon,	the	originators	of	the	paradigm:

Physical	Symbol	System	Hypothesis:	A	physical	symbol	system	has	the	necessary	and	sufficient	means	for
general	intelligent	action.

Heuristic	Search	Hypothesis:	A	physical	symbol	system	solves	problems	by	progressively	and	selectively
(heuristically)	searching	through	a	problem	space	of	symbol	structures.

By	‘physical	symbol	system’,	Newell	and	Simon	meant	systems	that	process	symbol
structures	and	yet	are	grounded	in	a	physical	substrate—what	I	have	called	material	and
liminal	computational	artefacts,	except	that	they	include	both	natural	and	artificial	objects
under	their	rubric.

A	very	general	picture	of	a	heuristic	search-based	problem	solving	agent	(human	or
artificial)	is	depicted	in	Figure	8.	A	problem	is	solved	by	first	creating	a	symbolic
representation	of	the	problem	in	a	working	memory	or	problem	space.	The	problem
representation	will	typically	denote	the	initial	state,	which	is	where	the	agent	starts,	and
the	goal	state,	which	represents	a	solution	to	the	problem.	In	addition,	the	problem	space
must	be	capable	of	representing	all	possible	states	that	might	be	reached	in	the	effort	to	go
from	the	initial	to	the	goal	state.	The	problem	space	is	what	mathematicians	might	call	a
‘state	space’.

8.	General	structure	of	a	heuristic	search	system.

Transitions	from	one	state	to	another	are	effected	by	appealing	to	the	contents	of	the
agent’s	knowledge	space	(the	contents	of	a	long-term	memory).	Elements	from	this
knowledge	space	are	selected	and	applied	to	a	‘current	state’	in	the	problem	space
resulting	in	a	new	state.	The	organ	that	does	this	is	shown	in	Figure	8	as	the	interpreter
(on	which	more	later).	The	successive	applications	of	knowledge	elements	in	effect	result
in	the	agent	conducting	a	search	for	a	solution	through	the	problem	space.	This	search
process	constitutes	a	computation.	The	problem	is	solved	when,	beginning	with	the	initial
state,	the	application	of	a	sequence	of	knowledge	elements	results	in	the	goal	state	being
reached.

However,	since	a	problem	space	may	be	arbitrarily	large,	the	search	through	it	is	not
randomly	conducted.	Rather,	the	agent	deploys	heuristics	to	control	the	amount	of	search,
to	prune	away	parts	of	the	search	space	as	unnecessary,	and	thereby	converge	to	a	solution
as	rapidly	as	possible.

Weak	methods	and	strong	methods
The	heart	of	the	heuristic	search	paradigm	is,	thus,	the	heuristics	contained	in	the
knowledge	space.	These	may	range	from	the	very	general—applicable	to	a	wide	range	of
problem	domains—to	the	very	specific—relevant	to	particular	problem	domains.	The
former	are	called	weak	methods	and	the	latter	strong	methods.	In	general,	when	the
problem	domain	is	poorly	understood	weak	methods	are	more	promising;	when	the
problem	domain	is	known	or	understood	in	more	detail	strong	methods	are	more
appropriate.

One	effective	weak	method	(which	we	have	encountered	several	times	already)	is	divide-
and-rule.	Another	is	called	means-ends	analysis:

Given	a	current	problem	state	and	a	goal	state,	determine	the	difference	between	the	two.	Then	reduce	the
difference	by	applying	a	relevant	‘operator’.	If,	however,	the	necessary	precondition	for	the	operator	to	apply	is
not	satisfied,	reduce	the	difference	between	the	current	state	and	the	precondition	by	recursively	applying
means-ends	analysis	to	the	pair,	current	state	and	precondition.

An	example	of	a	problem	to	which	both	divide-and-conquer	and	means-ends	analysis	can
apply	together	is	that	of	a	student	planning	her	degree	program.	Divide-and-conquer
decomposes	the	problem	into	subproblems	corresponding	to	each	of	the	years	of	the
degree	program.	The	original	goal	state	(to	graduate	in	a	particular	subject	in	X	number	of
years,	say)	is	decomposed	into	‘subgoal’	states	for	each	of	the	X	years.	For	each	year,	the
student	will	identify	the	initial	state	for	that	year	(the	courses	already	taken	before	that
year)	and	attempt	to	identify	courses	to	be	taken	that	eliminate	the	difference	between	the
initial	and	goal	states	for	that	year.	The	search	for	courses	is	narrowed	by	selecting	those
that	are	mandatory.	But	some	of	these	courses	may	require	prerequisites.	Thus	means-ends
analysis	is	applied	to	reduce	the	gap	between	the	initial	state	and	the	prerequisites.	And	so
on.

Notice	that	means-ends	analysis	is	a	recursive	strategy	(see	Chapter	3).	So	what	is	so
‘heuristic’	about	it?	The	point	is	that	there	is	no	guarantee	that	in	a	particular	problem
domain,	means-ends	analysis	will	terminate	successfully.	For	example,	given	a	current
state	and	a	goal	state,	several	actions	may	be	applicable	to	reduce	the	difference.	The
action	chosen	may	determine	the	difference	between	success	and	failure.

Strong	methods	usually	represent	expert	knowledge	of	the	kind	specialists	in	a	problem
domain	possess	through	formal	education,	hands-on	training,	and	experience.
Computational	systems	that	determine	the	molecular	structure	of	chemicals	or	aid
engineers	in	their	design	projects	are	typical	instances.	These	heuristics	are	often
represented	in	the	knowledge	space	as	rules	(called	productions)	of	the	form:

IF	condition	THEN	action.

That	is,	if	the	current	state	in	the	problem	space	matches	the	‘condition’	part	of	a
production	then	the	corresponding	‘action’	may	be	taken.	As	an	example	from	the	domain
of	digital	circuit	design	(and	implemented	as	part	of	a	heuristic	design	automation
system):

IF					the	goal	of	the	circuit	module	is	to	convert	a	serial	signal	to	a	parallel	one

THEN	use	a	shift	register.

It	is	possible	that	the	current	state	in	the	problem	space	is	such	that	it	matches	the

condition	parts	of	several	productions:
IF	condition1	THEN	action1;

IF	condition2	THEN	action2.

…………..

IF	conditionM	THEN	actionM.

In	such	a	situation	the	choice	of	an	action	to	take	may	have	to	be	guided	by	a	higher	level
heuristic	(e.g.	select	the	first	matching	production).	This	may	turn	out	to	be	a	wrong
choice	as	realized	later	in	the	computation,	in	which	case	the	system	must	‘backtrack’	to	a
prior	state	and	explore	some	other	production.

Interpreting	heuristic	rules
Notice	the	‘interpreter’	in	Figure	8.	Its	task	is	to	execute	a	cyclic	algorithm	analogous	to
the	ICycle	in	a	physical	computer	(Chapter	5):

Match:	Identify	all	the	productions	in	the	knowledge	space	the	condition	parts	of	which	match	the	current	state
in	the	problem	space.	Collect	these	rules	into	a	conflict	set.

Select	a	preferred	rule	from	the	conflict	set	according	to	a	selection	heuristic.

Execute	the	action	part	of	the	preferred	rule.

Goto	Match.

Apart	from	the	uncertainty	associated	with	the	heuristic	search	paradigm,	the	other
noticeable	difference	from	algorithms	(exact	or	heuristic)	is	(as	mentioned	before)	that	in
the	latter	all	the	knowledge	required	to	execute	an	algorithm	is	embedded	in	the	algorithm
itself.	In	contrast,	in	the	heuristic	search	paradigm	almost	all	the	knowledge	is	located	in
the	knowledge	space	(or	long-term	memory).	The	complexity	of	the	heuristic	search
paradigm	lies	mostly	in	the	richness	of	the	knowledge	space.

Chapter	7
Computational	thinking

A	certain	mentality
Most	sciences	in	the	modern	era—say,	after	the	Second	World	War—are	so	technical,
indeed	esoteric,	that	their	deeper	comprehension	remains	largely	limited	to	the	specialists,
the	community	of	those	sciences’	practitioners.	Think,	for	example,	of	the	modern	physics
of	fundamental	particles.	At	best,	when	relevant,	their	implications	are	revealed	to	the
larger	public	by	way	of	technological	consequences.

Yet	there	are	some	sciences	that	touch	the	imagination	of	those	outside	the	specialists	by
way	of	the	compelling	nature	of	their	central	ideas.	The	theory	of	evolution	is	one	such
instance	from	the	realm	of	the	natural	sciences.	Its	tentacles	of	influence	have	extended
into	the	reaches	of	sociology,	psychology,	economics,	and	even	computer	science,	fields	of
thought	having	nothing	to	do	with	genes	or	natural	selection.

Among	the	sciences	of	the	artificial,	computer	science	manifests	a	similar	characteristic.	I
am	not	referring	to	the	ubiquitous	and	‘in	your	face’	technological	tools	which	have
colonized	the	social	world.	I	am	referring,	rather,	to	the	emergence	of	a	certain	mentality.

This	mentality,	or	at	least	its	promise,	was	articulated	passionately	and	eloquently	by	one
of	the	pioneers	of	artificial	intelligence,	Seymour	Papert,	in	his	book	Mindstorms	(1980).
His	aim	in	this	work,	Papert	announced,	was	to	discuss	and	describe	how	the	computer
might	afford	human	beings	new	ways	of	learning	and	thinking,	not	only	as	a	practical,
instrumental	artefact	but	in	much	more	fundamental,	conceptual	ways.	Such	influences
would	facilitate	modes	of	thinking	even	when	the	thinkers	were	not	in	direct	contact	with
the	physical	machine.	For	Papert,	the	computer	held	promise	as	a	potential	‘carrier	of
powerful	ideas	and	of	seeds	of	cultural	change’.	His	book,	he	promised,	would	speak	of
how	the	computer	could	help	humans	fruitfully	transgress	the	traditional	boundaries
separating	objective	knowledge	and	self-knowledge,	and	between	the	humanities	and	the
sciences.

What	Papert	was	articulating	was	a	vision,	perhaps	utopian,	that	went	well	beyond	the
purely	instrumental	influence	of	computers	and	computing	in	the	affairs	of	the	world.	This
latter	vision	had	existed	from	the	very	beginnings	of	automatic	computation	in	the	time	of
Charles	Babbage	and	Ada,	Countess	of	Lovelace	in	the	mid-19th	century.	Papert’s	vision,
rather,	was	the	inculcation	of	a	mentality	that	would	guide,	shape,	and	influence	the	ways
in	which	a	person	would	think	about,	perceive,	and	respond	to,	aspects	of	the	world—
one’s	inner	world	and	the	world	outside—which	prima	facie	have	no	apparent	connection
to	computing—perhaps	by	way	of	analogy,	metaphor,	and	imagination.

Over	a	quarter	of	a	century	after	Papert’s	manifesto,	computer	scientist	Jeanette	Wing
gave	this	mentality	a	name:	computational	thinking.	But	Wing’s	vision	is	perhaps	more
prosaic	than	was	Papert’s.	Computational	thinking,	she	wrote	in	2008,	entails	approaches
to	such	activities	as	problem	solving,	designing,	and	making	sense	of	intelligent	behaviour
that	draws	on	fundamental	concepts	of	computing.	Yet	computational	thinking	cannot	be
an	island	of	its	own.	In	the	realm	of	problem	solving	it	would	be	akin	to	mathematical
thinking;	in	the	domain	of	design	it	would	share	features	with	the	engineering	mentality;
and	in	understanding	intelligent	systems	(including,	of	course,	the	mind)	it	might	find
common	ground	with	scientific	thinking.

Like	Papert,	Wing	disassociated	the	mentality	of	computational	thinking	from	the	physical

computer	itself:	one	can	think	computationally	without	the	presence	of	a	computer.

But	what	does	this	mentality	of	computational	thinking	entail?	We	will	see	some	examples
later	but	before	that	let	us	follow	AI	researcher	Paul	Rosenbloom’s	interpretation	of	the
notion	of	computational	thinking	in	terms	of	two	kinds	of	relationships:	one	is	interaction,
a	concept	introduced	earlier	(see	Chapter	2)	to	mean,	in	Rosenbloom’s	phrase,	‘reciprocal
action,	effect	or	influence’	between	two	entities.	However,	interaction	can	signify
unidirectional	influence	of	one	system	A	on	another	system	B	(notationally,	Rosenbloom
depicted	this	as	‘A	➔B’	or	‘B	←	A’)	as	well	as	bidirectional	or	mutual	influence
(notationally	‘A	←	➔	B’).	By	implementation	Rosenbloom	meant	to	‘put	into	effect’	a
system	A	at	a	higher	abstraction	level	in	terms	of	interacting	processes	within	a	system	B
at	a	lower	level	of	abstraction	(notationally,	‘A/B’).	A	special	case	of	implementation	is
simulation:	B	simulates	A	(A/B)	when	B	acts	to	imitate	or	mimic	the	behaviour	of	A.

Using	these	two	relationships,	Rosenbloom	explained,	the	simplest	representation	of
computational	thinking	is	when	a	computational	artefact	(C)	influences	the	behaviour	of	a
human	being	(H):	C	➔	H.	Rosenbloom	then	goes	further.	Instead	of	just	a	human	being	H,
suppose	we	consider	a	human	simulating	a	computational	artefact	C:	C/H.	In	this	case	we
have	the	relationship	C	➔	C/H,	meaning	that	computational	artefacts	influence	human
beings	who	simulate	the	behaviour	of	such	artefacts.	Or	we	may	go	still	further:	consider	a
human	being	H	simulating	mentally	a	computational	artefact	C	which	itself	has
implemented	or	is	simulating	the	behaviour	of	some	real	world	domain	D:	D/C/H.	For
example,	suppose	D	is	human	behaviour.	Then	D/C	means	using	a	computer	to	simulate	or
model	human	behaviour.	And	D/C/H	means	a	human	being	mentally	simulating	such	a
computer	model	of	human	behaviour.	This	leads	to	the	following	interpretation	of
computational	thinking:	C	➔	D/C/H.

More	nuanced	interpretations	are	possible,	but	these	interpretations	in	terms	of	interaction
and	implementation/simulation	suffice	to	illustrate	the	general	scope	of	computational
thinking.

Computational	thinking	as	mental	skills
The	most	obvious	influence	computing	can	exercise	on	people	is	as	a	source	of	mental
skills:	a	repertoire	of	analytical	and	problem	solving	tools	which	humans	can	apply	in	the
course	of	their	lives	regardless	of	the	presence	or	absence	of	actual	computers.	This	was
what	Jeanette	Wing	had	in	mind.	In	particular,	she	took	abstraction	as	the	‘essence’,	the
‘nuts	and	bolts’	of	computational	thinking.	But	while	(as	we	have	seen	throughout	this
book)	abstraction	is	undoubtedly	a	core	computational	concept,	computer	science	offers
many	more	notions	that	one	may	assimilate	and	integrate	into	one’s	kit	of	thinking	tools.	I
am	thinking	of	heuristic	methods,	weak	and	strong;	the	idea	of	satisficing	rather	than
optimizing	as	a	realistic	decision-making	objective;	of	thinking	in	algorithmic	terms	and
comprehending	when	and	whether	this	is	the	appropriate	pathway	to	problem	solving;	of
the	conditions	and	architecture	of	parallel	processing	as	means	for	approaching
multitasking	endeavours;	of	approaching	a	problem	situation	from	the	‘top	down’
(beginning	with	the	goal	and	the	initial	problem	state,	and	refining	the	goal	into	simpler
subgoals,	and	the	latter	into	still	simpler	subgoals,	etc.)	or	‘bottom	up’	(beginning	with	the
goal	and	the	lowest	level	building	blocks	and	constructing	a	solution	by	composing
building	blocks	into	larger	building	blocks,	and	so	on).	But	what	is	significant	is	that	to
acquire	these	tools	of	thought	demands	a	certain	level	of	mastery	of	the	concepts	of
computer	science.	For	Wing	this	entails	introducing	computational	thinking	as	part	of	the
educational	curriculum	from	an	early	age.

But	computational	thinking	entails	more	than	analytical	and	problem	solving	skills.	It
encompasses	a	way	of	imagining,	by	way	of	seeing	analogies	and	constructing	metaphors.
It	is	this	combination	of	technical	skills	and	imagination	that,	I	think,	Papert	had	in	mind,
and	which	provides	the	full	richness	of	the	mentality	of	computational	thinking.	We
consider	now	some	realms	of	intellectual	and	scientific	inquiry	where	this	mentality	has
proved	to	be	effective.

Thinking	computationally	about	the	mind
Certainly,	one	of	the	most	potent,	albeit	controversial,	manifestations	of	this	mentality	is
in	thinking	about	thinking:	the	influence	of	computer	science	on	cognitive	psychology.
Turning	Turing’s	celebrated	question—whether	computers	can	think	(the	basis	of	AI)—on
its	head,	cognitive	psychologists	consider	the	question:	Is	thinking	a	computational
process?

The	response	to	this	question	reaches	back	to	the	pioneering	work	of	Allan	Newell	and
Herbert	Simon	in	the	late	1950s,	in	their	development	of	an	information	processing	theory
of	human	problem	solving	which	combined	such	computational	issues	as	heuristics,	levels
of	abstraction,	and	symbol	structures	with	logic.	Much	more	recently	it	has	led	to	the
construction	of	models	of	cognitive	architecture,	most	prominently	by	researchers	such	as
psychologist	John	Anderson	and	computer	scientists	Allen	Newell,	John	Laird,	and	Paul
Rosenbloom.	Anderson’s	series	of	models,	called,	generically,	ACT,	and	that	of	Newell	et
al.	called	SOAR,	were	both	strongly	influenced	by	the	basic	principles	of	inner	computer
architecture	(see	Chapter	5).	In	these	models	the	architecture	of	cognition	is	explored	in
terms	of	memory	hierarchies	holding	symbol	structures	that	represent	aspects	of	the	world,
and	the	manipulation	and	processing	of	symbol	structures	by	processes	analogous	to	the
instruction	interpretation	cycle	(ICycle).	These	architectural	models	have	been	extensively
investigated	both	theoretically	and	empirically	as	possible	theories	of	the	thinking	mind	at
a	certain	abstraction	level.	Another	kind	of	computationally	influenced	model	of	the	mind
begins	with	the	principles	of	parallel	processing	and	distributed	computing,	and	envisions
mind	as	a	‘society’	of	distributed,	communicating,	and	interacting	cognitive	modules.	An
influential	proponent	of	this	kind	of	mental	modelling	was	AI	pioneer	Marvin	Minsky.	As
for	cognitive	scientist	and	philosopher	Margaret	Boden,	she	titled	her	magisterial	history
of	cognitive	science	Mind	as	Machine	(2006):	the	mind	is	a	computational	device,	by	her
account.

The	computational	brain
Representing	or	modelling	the	neuronal	structure	of	the	brain	as	a	computational	system
and,	conversely,	computational	artefacts	as	networks	of	highly	abstract	neuron-like	entities
has	a	history	that	reaches	back	to	the	pioneering	work	of	mathematician	Warren	Pitts	and
neurophysiologist	Warren	McCulloch,	and	the	irrepressible	John	von	Neumann	in	the
1940s.	Over	the	next	sixty	years	a	scientific	paradigm	called	connectionism	has	evolved.
In	this	approach,	the	mentality	of	computational	thinking	is	expressed	most	specifically	in
the	design	of	highly	interconnected	networks	(hence	the	term	‘connectionism’)	of	very
simple	computational	elements	which	collectively	serve	to	model	the	behaviour	of	basic
brain	processes	that	are	the	building	blocks	in	higher	cognitive	processes	(such	as
detecting	cues	or	recognizing	patterns	in	visual	processes).	Connectionist	architectures	of
the	brain	are	at	a	lower	abstraction	level	than	the	symbol	processing	cognitive
architectures	mentioned	in	the	previous	section.

The	emergence	of	cognitive	science
Symbol	processing	cognitive	architectures	of	mind	and	connectionist	models	of	the	brain
are	two	of	the	ways	in	which	computational	artefacts	and	the	principles	of	computer
science	have	influenced	the	shaping	and	emergence	of	the	relatively	new	interdisciplinary
field	of	cognitive	science.	I	must	emphasize	that	not	all	cognitive	scientists—for	instance
the	psychologist	Jerome	Bruner—take	computation	to	be	a	central	element	of	cognition.
Nonetheless,	the	idea	of	understanding	such	activities	as	thinking,	remembering,	planning,
problem	solving,	decision	making,	perceiving,	and	conceptualizing	and	understanding	by
way	of	constructing	computational	models	and	computation-based	hypotheses	is	a
compelling	one;	in	particular,	the	view	of	computer	science	as	a	science	of	automatic
symbol	processing	served	as	a	powerful	catalyst	in	the	emergence	of	cognitive	science
itself.	The	core	of	Margaret	Boden’s	history	of	cognitive	science,	mentioned	in	the
previous	section,	is	the	development	of	automatic	computing.

Understanding	human	creativity
The	fascinating	subject	of	creativity,	ranging	from	the	exceptional,	historically	original
kind	to	the	personal,	everyday	brand,	is	a	vast	topic	that	has	attracted	the	professional
attention	of	psychologists,	psychoanalysts,	philosophers,	pedagogues,	aestheticians,	art
theorists,	design	theorists,	and	intellectual	historians	and	biographers;	not	to	speak	of	the
more	self-reflexive	creators	themselves	(scientists,	inventors,	poets	and	writers,	musicians,
artists,	etc.).	The	range	of	approaches	to,	models	and	theories	of,	creativity	is,	accordingly,
bewilderingly	large,	not	least	because	of	the	many	definitions	of	creativity.

But	at	least	one	community	of	creativity	researchers	has	resorted	to	computational
thinking	as	a	modus	operandi.	They	have	proposed	computational	models	and	theories	of
the	creative	process	that	draw	heavily	on	the	principles	of	heuristic	computing,
representation	of	knowledge	as	complex	symbol	structures	(called	schemas),	and	the
principles	of	abstraction.	Here	too,	such	is	its	compelling	influence,	computational
thinking	has	afforded	a	common	ground	for	the	analysis	of	scientific,	technological,
artistic,	literary,	and	musical	creativity:	a	marriage	of	many	cultures	as	Papert	had	hoped
for.

For	example,	literary	scholar	Mark	Turner	has	applied	computational	principles	to	the
problem	of	understanding	literary	composition,	just	as	philosopher	of	science	and
cognitive	scientist	Paul	Thagard	strove	to	explain	scientific	revolutions	by	way	of
computational	models,	and	the	present	author,	a	computer	scientist	and	creativity
researcher,	constructed	a	computational	explanation	for	the	design	and	invention	of
technological	artefacts	and	ideas	in	the	artificial	sciences.	The	mentality	of	computational
thinking	has	served	as	the	glue	that	binds	these	different	intellectual	and	creative	cultures
into	one.	In	many	of	these	computational	studies	of	creativity,	computer	science	has
provided	a	precision	of	thought	in	which	to	express	concepts	pertaining	to	creativity	which
was	formerly	absent.

To	take	an	example,	the	writer	Arthur	Koestler	in	his	monumental	work	The	Act	of
Creation	(1964)	postulated	a	process	called	‘bisociation’	as	the	mechanism	by	which
creative	acts	are	effected.	By	bisociation,	Koestler	meant	the	coming	together	of	two	or
more	unconnected	concepts	and	their	blending,	resulting	in	an	original	product.	However,
precisely	how	bisociation	occurred	remained	unexplained.	Computational	thinking	has
afforded	some	creativity	researchers	(such	as	Mark	Turner	and	this	writer)	explanations	of
certain	bisociations	in	the	precise	language	of	computer	science.

Understanding	molecular	information	processing
In	1953,	James	Watson	and	Francis	Crick	famously	discovered	the	structure	of	the	DNA
molecule.	Thus	was	initiated	the	science	of	molecular	biology.	Its	concerns	included
understanding	and	discovering	such	mechanisms	as	the	replication	of	DNA,	transcription
of	DNA	to	RNA,	and	translation	of	RNA	into	protein—fundamental	biological	processes.
Thus	the	notion	of	molecules	as	carriers	of	information	entered	the	biological
consciousness.	Theoretical	biologists	influenced	by	computational	ideas	began	to	model
genetical	processes	in	computational	terms	(which,	incidentally,	also	led	to	the	invention
of	algorithms	based	on	genetical	concepts).	Computational	thinking	shaped	what	was
called	‘biological	information	processing’	or,	in	contemporary	jargon,	bioinformatics.

Epilogue:	is	computer	science	a	universal
science?

Throughout	this	book	the	premise	has	been	that	computer	science	is	a	science	of	the
artificial:	that	it	is	centred	on	symbol	processing	(or	computational)	artefacts;	that	it	is	a
science	of	how	things	ought	to	be	rather	than	how	things	are;	that	the	goals	of	the	artificers
(algorithm	designers,	programmers,	software	engineers,	computer	architects,
informaticists)	must	be	taken	into	account	in	understanding	the	nature	of	this	science.	In
all	these	respects	the	distinction	from	the	natural	sciences	is	clear.

However,	in	the	last	chapter	we	have	seen	that	computational	thinking	serves	as	a	bridge
between	the	world	of	computational	artefacts	and	the	natural	world,	specifically,	that	of
biological	molecules,	human	cognition,	and	neuronal	processes.	Could	it	be,	then,	that
computing	not	only	affords	a	mentality	but	that,	more	insidiously,	computation	as	a
phenomenon	embraces	the	natural	and	the	artificial?	That	computer	science	is	a	universal
science?

In	recent	years	some	computer	scientists	have	thought	precisely	along	these	lines.	Thus,
Peter	Denning	has	argued	that	computing	should	no	longer	be	thought	of	as	a	science	of
the	artificial,	since	information	processes	are	abundantly	found	in	nature.	Denning	and
another	computer	scientist,	Peter	Freeman,	have	contended	that	in	the	past	few	decades	the
focus	of	(some	computer	scientists’)	attention	has	shifted	from	computational	artefacts	to
information	processes	per	se—including	natural	processes.

For	Denning,	Freeman,	and	yet	another	computer	scientist	Richard	Snodgrass,	computing
is,	thus,	a	natural	science	since	computer	scientists	are	as	much	in	the	business	of
discovering	how	things	are	(in	the	brain,	in	the	living	cell,	and,	even,	in	the	realm	of
computational	artefacts)	as	in	elucidating	how	things	ought	to	be.	This	point	of	view
implies	that	computational	artefacts	are	of	the	same	ontological	category	as	natural
entities;	or	that	there	is	no	distinction	to	be	made	between	the	natural	and	the	artificial.
Snodgrass,	in	fact,	invented	a	word	to	describe	the	natural	science	of	computer	science:
‘Ergalics’,	from	the	Greek	root	‘ergon’	(εργων),	meaning	‘work’.

Paul	Rosenbloom,	in	broad	agreement	with	Snodgrass,	but	wishing	to	avoid	a	neologism,
simply	identified	the	computer	sciences	alongside	the	physical,	life,	and	social	sciences,	as
the	‘fourth	great	scientific	domain’.

The	uniqueness	of	computer	science	as	constituting	a	paradigm	of	its	own	has	been	an
abiding	theme	of	this	book,	and	so	Rosenbloom’s	thesis	is	consistent	with	this	theme.	The
question	is	whether	one	should	distinguish	between	the	study	of	natural	information
processes	and	that	of	artificial	symbolic	processes.	Here,	the	distinction	between

information	and	symbol	seems	justified.	In	the	natural	domain,	entities	do	not	represent
anything	but	themselves.	Entities	such	as	neurons,	or	the	nucleotides	that	are	the	building
blocks	of	DNA,	or	the	amino	acids	constituting	proteins,	do	not	represent	anything	but
themselves.	Thus,	I	find	it	problematic	to	refer	to	DNA	processing	as	symbol	processing,
though	to	refer	to	these	entities	as	carriers	of	non-referential	information	seems	valid.

Ontologically,	I	think,	a	distinction	has	to	be	made	between	computer	science	as	a	science
of	the	artificial	and	computer	science	as	a	natural	science.	In	the	former,	human	agency	(in
the	form	of	goals	and	purpose,	accessing	knowledge,	effecting	action)	is	part	of	the
science.	In	the	latter	case,	agency	is	avowedly	absent.	The	paradigms	are	fundamentally
distinct.

Be	that	as	it	may,	and	regardless	of	any	such	possible	ontological	difference,	what
computer	science	has	given	us,	as	the	preceding	chapters	have	tried	to	show,	is	a
remarkably	distinctive	way	of	perceiving,	thinking	about,	and	solving	a	breathtakingly
broad	spectrum	of	problems—spanning	natural,	social,	cultural,	technological,	and
economic	realms.	This	is	surely	its	most	original	scientific	contribution	to	the	modern
world.

Further	reading

The	reader	may	wish	to	study	the	topics	of	the	various	chapters	in	more	depth.	The
following	list	is	a	mix	of	some	classic	and	historically	influential	(and	still	eminently
readable)	works	and	more	contemporary	texts;	a	mix	of	essays	and	historical	works
written	for	a	broad	readership	and	somewhat	more	technical	articles.

Preface
S.	Dasgupta	(2014).	It	Began	with	Babbage:	The	Genesis	of	Computer	Science.	New

York:	Oxford	University	Press:	esp.	chapter	15.

Chapter	1:	The	‘stuff’	of	computing
S.	Dasgupta	(2014).	It	Began	with	Babbage:	The	Genesis	of	Computer	Science.	New

York:	Oxford	University	Press:	chapters	1	&	2.

L.	Floridi	(2010).	Information:	A	Very	Short	Introduction.	Oxford:	Oxford	University
Press.

D.	Ince	(2011).	Computer:	A	Very	Short	Introduction.	Oxford:	Oxford	University	Press.

D.E.	Knuth	(1996).	‘Algorithms,	Programs	and	Computer	Science’	(originally	published
in	1966).	Selected	Papers	in	Computer	Science.	Stanford,	CA:	Center	for	the	Study	of
Language	and	Information.

A.	Newell,	A.J.	Perlis,	&	H.A.	Simon	(1967).	‘What	is	Computer	Science?’	Science,	157,
1373–4.

A.	Newell	&	H.A.	Simon	(1976).	‘Computer	Science	as	Empirical	Inquiry:	Symbols	and
Search’,	Communications	of	the	ACM,	19,	113–26.

P.S.	Rosenbloom	(2010).	On	Computing:	The	Fourth	Great	Scientific	Domain.
Cambridge,	MA:	MIT	Press.

Chapter	2:	Computational	artefacts
C.G.	Bell,	J.C.	Mudge,	&	J.E.	McNamara	(1978).	‘Seven	Views	of	Computer	Systems’,

pp.	1–26,	in	C.G.	Bell,	J.C.	Mudge,	&	J.E.	McNamara	(ed.).	Computer	Engineering:	A
DEC	View	of	Hardware	Systems	Design.	Bedford,	MA:	Digital	Press.

C.G.	Bell,	D.P.	Siweorek,	&	A.	Newell	(1982).	Computer	Structures:	Principles	and
Examples.	New	York:	McGraw-Hill:	esp.	chapter	2.

S.	Dasgupta	(2014).	It	Began	with	Babbage:	The	Genesis	of	Computer	Science.	New
York:	Oxford	University	Press:	esp.	prologue	and	chapter	4.

J.	Copeland	(ed.)	(2004).	The	Essential	Turing.	Oxford:	Oxford	University	Press.

J.	Copeland	(2004).	‘Computing’,	pp.	3–18,	in	L.	Floridi	(ed.).	Philosophy	of	Computing
and	Information.	Oxford:	Blackwell.

E.W.	Dijkstra	(1968).	‘The	Structure	of	“THE”	Multiprogramming	System’,
Communications	of	the	ACM,	11,	341–6.

E.W.	Dijkstra	(1971).	‘Hierarchical	Ordering	of	Sequential	Processes’,	Acta	Informatica,
1,	115–38.

D.	Ince	(2011).	The	Computer:	A	Very	Short	Introduction.	Oxford:	Oxford	University
Press.

H.H.	Pattee	(ed.)	(1973).	Hierarchy	Theory:	The	Challenge	of	Complex	Systems.	New
York:	Braziller.

H.A.	Simon	(1996).	The	Sciences	of	the	Artificial	(3rd	edn).	Cambridge,	MA:	MIT	Press.

A.S.	Tanenbaum	&	H.	Bos	(2014).	Modern	Operating	Systems	(4th	edn).	Englewood
Cliffs,	NJ:	Prentice-Hall.

Chapter	3:	Algorithmic	thinking
J.	Copeland	(2004).	‘Computing’,	pp.	3–18,	in	L.	Floridi	(ed.).	Philosophy	of	Computing

and	Information.	Oxford:	Blackwell.

E.W.	Dijkstra	(1965).	‘Programming	Considered	as	a	Human	Activity’,	Proceedings	of	the
1965	IFIP	Congress.	Amsterdam:	North-Holland,	pp.	213–17.

D.E.	Knuth	(1996).	‘Algorithms’,	pp.	59–86,	in	D.E.	Knuth.	Selected	Papers	on	Computer
Science.	Stanford,	CA:	Center	for	the	Study	of	Language	and	Information.

D.E.	Knuth	(1997).	The	Art	of	Computer	Programming.	Volume	1.	Fundamental
Algorithms	(3rd	edn).	Reading,	MA:	Addison-Wesley.

D.E.	Knuth	(2001).	‘Aesthetics’,	pp.	91–138,	in	D.E.	Knuth.	Things	a	Computer	Scientist
Rarely	Talks	About.	Stanford,	CA:	Center	for	the	Study	of	Language	and	Information.

R.	Sedgewick	&	K.	Wayne	(2011).	Algorithms	(4th	edn).	Reading,	MA:	Addison-Wesley.

Chapter	4:	The	art,	science,	and	engineering	of	programming
F.P.	Brooks,	Jr	(1975).	The	Mythical	Man-Month:	Essays	on	Software	Engineering.

Reading,	MA:	Addison-Wesley.

P.	Freeman	(1987).	Software	Perspectives.	Reading,	MA:	Addison-Wesley.

C.A.R.	Hoare	(1985).	The	Mathematics	of	Programming.	Oxford:	Clarendon	Press.

C.A.R.	Hoare	(2006).	‘The	Ideal	of	Program	Correctness’.
<http://www.bcs.org/upload/pdf/correctness.pdf>.	Retrieved	28	May	2014.

D.E.	Knuth	(1992).	Literate	Programming.	Stanford,	CA:	Center	for	the	Study	of
Language	and	Information.	See	esp.	‘Computer	Programming	as	Art’,	pp.	1–16.

D.E.	Knuth	(2001).	Things	a	Computer	Scientist	Rarely	Talks	About.	Stanford,	CA:	Center
for	the	Study	of	Language	and	Information.	See	esp.	‘Aesthetics’,	pp.	91–138.

I.	Sommerville	(2010).	Software	Engineering	(9th	edn).	Reading,	MA:	Addison-Wesley.

M.V.	Wilkes	(1995).	Computing	Perspectives.	San	Francisco:	Morgan	Kauffman.	Esp.
‘Software	and	the	Programmer’,	pp.	87–92;	‘From	FORTRAN	and	ALGOL	to	Object-
Oriented	Languages’,	pp.	93–101.

N.	Wirth	(1973).	Systematic	Programming:	An	Introduction.	Englewood	Cliffs,	NJ:
Prentice	Hall.

http://www.bcs.org/upload/pdf/correctness.pdf

Chapter	5:	The	discipline	of	computer	architecture
G.S.	Almasi	&	A.	Gottlieb	(1989).	Highly	Parallel	Computing.	New	York:	The	Benjamin

Cummings	Publishing	Company.

C.G.	Bell,	J.C.	Mudge,	&	J.E.	McNamara	(ed.)	(1978).	Computer	Engineering:	A	DEC
View	of	Hardware	Systems	Design.	Bedford,	MA:	Digital	Press.

C.G.	Bell,	D.P.	Sieweorek,	&	A.	Newell	(1982).	Computer	Structures:	Principles	and
Examples.	New	York:	McGraw-Hill.

S.	Dasgupta	(2014).	It	Began	with	Babbage:	The	Genesis	of	Computer	Science.	New
York:	Oxford	University	Press.

S.	Habib	(ed.)	(1988).	Microprogramming	and	Firmware	Engineering	Methods.	New
York:	Van	Nostrand	Reinhold.

C.	Hamachar,	Z.	Vranesic,	&	S.	Zaky	(2011).	Computer	Organization	and	Embedded
Systems	(5th	edn).	New	York:	McGraw-Hill.

K.	Hwang	&	F.A.	Briggs	(1984).	Computer	Architecture	and	Parallel	Processing.	New
York:	McGraw-Hill.

D.E.	Ince	(2011).	The	Computer:	A	Very	Short	Introduction.	Oxford:	Oxford	University
Press.

D.A.	Patterson	&	J.L.	Henessy	(2011).	Computer	Architecture:	A	Quantitative	Approach
(5th	edn).	Burlington,	MA:	Morgan	Kaufmann.

A.S.	Tanenbaum	(2011).	Structured	Computer	Organization	(6th	edn).	Englewood	Cliffs,
NJ:	Prentice	Hall.

Chapter	6:	Heuristic	computing
D.R.	Hofstadter	(1999).	Gödel,	Escher,	Bach:	An	Eternal	Golden	Braid	(20th	anniversary

edn).	New	York:	Basic	Books.

A.	Newell	&	H.A.	Simon	(1972).	Human	Problem	Solving.	Englewood	Cliffs,	NJ:
Prentice	Hall.

A.	Newell	&	H.A.	Simon	(1976).	‘Computer	Science	as	Empirical	Inquiry:	Symbols	and
Search’,	Communications	of	the	ACM,	19,	113–26.

J.	Pearl	(1984).	Heuristics:	Intelligent	Search	Strategies	for	Computer	Problem	Solving.
Reading,	MA:	Addison-Wesley.

G.	Polya	&	J.H.	Conway	(2014).	How	to	Solve	It:	A	New	Aspect	of	Mathematical	Method.
Princeton,	NJ:	Princeton	University	Press.	(Originally	published	in	1949).

D.L.	Poole	&	A.K.	Mackworth	(2010).	Artificial	Intelligence:	Foundations	of
Computational	Agents.	Cambridge:	Cambridge	University	Press.

S.	Russell	&	P.	Norvig	(2014).	Artificial	Intelligence:	A	Modern	Approach	(3rd	edn).	New
Delhi:	Dorling	Kinderseley/Pearson.

H.A.	Simon	(1995).	‘Artificial	Intelligence:	An	Empirical	Science’,	Artificial	Intelligence
77,	1,	95–127.

H.A.	Simon	(1996).	The	Sciences	of	the	Artificial	(3rd	edn).	Cambridge,	MA:	MIT	Press.

Chapter	7:	Computational	thinking
M.A.	Boden	(2006).	Minds	as	Machines.	Volume	1.	Oxford:	Clarendon	Press.

S.	Dasgupta	(1994).	Creativity	in	Invention	and	Design:	Computational	and	Cognitive
Explorations	of	Technological	Originality.	New	York:	Cambridge	University	Press.

S.	Papert	(1980).	Mindstorms.	New	York:	Basic	Books.

P.S.	Rosenbloom	(2013).	On	Computing:	The	Fourth	Great	Scientific	Domain.
Cambridge,	MA:	MIT	Press.

J.	Searle	(1984).	Minds,	Brains	and	Science.	Cambridge,	MA:	Harvard	University	Press.

J.	Setubal	&	J.	Meidinis	(1997).	Introduction	to	Computational	Molecular	Biology.	Pacific
Grove,	CA:	Brooks/Cole	Publishing	Company.

C.A.	Stewart	(ed.)	(2004).	‘Bioinformatics:	Transforming	Biomedical	Research	and
Medical	Care’	[Special	Section	on	Bioinformatics],	Communications	of	the	ACM,
47/11,	30–72.

P.R.	Thagard	(1988).	Computational	Philosophy	of	Science.	Cambridge,	MA:	MIT	Press.

P.R.	Thagard	(1992).	Conceptual	Revolutions.	Princeton,	NJ:	Princeton	University	Press.

J.M.	Wing	(2006).	‘Computational	Thinking’,	Communications	of	the	ACM,	49/3,	33–5.

J.M.	Wing	(2008).	‘Computational	Thinking	and	Thinking	about	Computing’,
Philosophical	Transactions	of	the	Royal	Society,	Series	A,	366,	pp.	3717–25.

Epilogue:	is	computer	science	a	universal	science?
S.	Dasgupta	(2014).	It	Began	with	Babbage:	The	Genesis	of	Computer	Science.	New

York:	Oxford	University	Press.

P.J.	Denning	&	C.H.	Martell	(2015).	Great	Principles	of	Computing.	Cambridge,	MA:
MIT	Press.

P.J.	Denning	(2005).	‘Is	Computer	Science	Science?’	Communications	of	the	ACM,	48/4,
27–31.

P.J.	Denning	&	P.A.	Freeman	(2009).	‘Computing’s	Paradigm’,	Communications	of	the
ACM,	52/12,	28–30.

P.S.	Rosenbloom	(2013).	On	Computing:	The	Fourth	Great	Scientific	Domain.
Cambridge,	MA:	MIT	Press.

R.	Snodgrass	(2010).	‘Ergalics:	A	Natural	Science	of	Computing’.
<http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.180.4704&rep=rep1&type=pdf>.	Retrieved	16	Sept.	2015.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.4704&rep=rep1&type=pdf

Index

A
abstract	artefact 23,	24,	25,	28,	31,	41,	42,	53,	62,	68,	82

abstract	expressionism 104

abstract	time 53,	55

abstraction 18–19,	20,	22,	39,	41,	59,	62,	81,	85,	123,	124,	126

accountancy 20

Ackoff,	Russell 8

Act	of	Creation,	The 126

addressing	modes 88,	105

aesthetics 57–9,	74–5,	112

agent 29,	107,	114

Aho,	Alfred 56

algorism 34

algorithm 24,	33,	34–59,	62,	64,	75,	83,	94,	104,	105,	106,	107,	108,	109,	110–13,	118

algorithmic	thinking 34,	62,	104

al-Khwarizmi,	Mohammed	ibn-Musa 33

Amdahl,	Gene 84,	100

Amdahl’s	law 100

amino	acids 130

analogical	reasoning 46

analogy 63,	64,	82,	120

Analytical	Engine 2

approximate	algorithm 108

architecture 15,	17

arithmetic	expression 48,	49,	73,	106

arithmetic	instructions 87

arithmetic	operations 50,	51,	71,	91,	92

array	data	structure 71

Art	of	Computer	Programming,	The 74

artefact 2,	5,	13,	14,	17,	18,	19,	21,	22,	23,	24,	25,	28,	31,	32,	41,	42,	46,	53,	63,	68,	69,	78,	81,	95,	129

artificer 19,	95,	129

artificial	intelligence	(AI) 2,	6,	11,	64,	113–17,	120

artificial	language 64,	67

artificial	process 130

assembler 68

assembly	language 68,	85,	89

assignment 70,	71,	73

assignment	operation 36

assignment	statement 70,	72,	73

astronomy 33

automata	theory 29,	30

automatic	computation xv,	10,	64,	120,	125

automaton	(automata) 1,	2,	3,	12,	13,	24

average	performance 54

axiomatic	tradition 77,	80

axioms 43,	63,	76,	77

axioms	of	arithmetic 43

B
Babbage,	Charles xv,	2,	120

backtracking 117

beauty 75,	77

Bernstein,	A.J. 97

Bernstein’s	conditions 97

best	fit	policy 108

big	data 11

Big	O	notation 55–6,	113

binary	digit	(bit) 4,	12,	87

binary	search 56,	57,	59

bioengineering 31

bioinformatics 127

biology 64

bit	string 91

Blaauw,	Gerrit 84

Boden,	Margaret 124,	125

Böhm,	Corrado 74,	75

Boolean	expressions 61

bottom	up	approach 122

brain 64,	124,	125

branch	instruction 87

Brooks,	Frederick 84

Bruner,	Jerome 125

brute	force	search 106

byte 4,	12,	87

C
cache	memory 92

character	string 71,	72,	92

chemical	notation 67

chemistry 3

chess 105,	109–10,	113

Chomsky,	Noam 75

Church,	Alonzo xv,	28

Church-Turing	thesis 28

circuit	design 95,	117

circuit	theory 31

civil	engineering 3,	20

cognition 64,	125,	129

cognitive	architecture 123,	124,	125

cognitive	process 63

cognitive	psychology 64,	123

cognitive	science xvi,	64,	125

cognitive	scientist 63

cognitive	unconscious 104

communication 65

communication	network 25,	91

compiler 47,	48,	49,	65,	69,	76,	85,	102

complexity 14,	54,	55,	59–61,	105,	112,	113

compositional	hierarchy 14–18,	22,	81

computation xvii,	10,	62,	64,	65,	68,	72,	115,	125

computational	artefact xvii,	5,	13,	14,	17,	18,	19,	21,	22,	23,	29,	30,	31,	32,	42,	64,	78,	81,	83,	114,	121,	122,	124,	125,
129,	130

computational	complexity 59–61

computational	concepts 69

computational	language 67,	69

computational	problems 59–61

computational	speedup 96

computational	thinking 34,	119–27,	129

computational	throughput 96

computer,	physical xv,	xvi,	xvii,	1,	2,	3,	4,	5,	13,	20,	21,	24,	47,	49,	62,	64,	65,	69,	76,	81,	83,	84,	85,	89,	95,	120

computer	architect 83,	90,	129

computer	architecture 15,	24,	65,	81–103,	105,	124

computer	design 65

computer	hardware	description	language 69

computer	design	and	description	language 69

computer	network 5,	84

computer	program 18,	22,	23,	47,	62,	64,	68,	76

computer	programming 9,	62–79

computer	science xv,	xvi,	xvii,	1,	2,	3,	6,	8,	9,	11,	12,	14,	19,	23,	30,	32,	34,	59,	62,	64,	65,	67,	83,	113,	119,	123,	125,
126,	129

computer	scientist xvi,	5,	8,	9,	10,	11,	14,	29,	34,	36,	44,	58,	62,	67,	73,	81,	130

computer	system 14,	78

computing xv,	xvi,	2,	3,	9,	12,	13,	15,	70

concepts	and	categories 69–74

conditional	statement 74,	96

connectionism 124,	125

constructive	hierarchy 19–22,	81

control	unit 91,	94,	95

Cook,	Stephen 60,	61

cores 99

correctness 53,	77,	80

creativity 46,	104,	125–6

Crick,	Francis 126

D
Darwinian	theory	of	evolution 34,	64

data 8,	9,	10,	11,	12,	13,	21,	22,	30,	72,	92

data	dependency	relations 97–8,	100

data	format 88

data	mining 6,	7,	8,	11

data	object 10,	11,	71,	88,	92,	96

data	processing 11

data	stream 98

data	structure 10,	11,	72

data	type 10,	11,	22,	71,	72,	86–7,	88,	105

database 7,	10,	11,	13

decision	procedure 34

declarative	knowledge 11,	43,	44,	45,	47

deductive	logic 76

definiteness	(of	algorithms) 36,	38,	41

definitions 43,	63,	77

Denning,	Peter 129,	130

design 42,	45,	46,	47,	50,	53,	58,	64,	65,	74,	79,	82,	102,	121

Design	and	Analysis	of	Computer	Algorithms,	The 56

determinacy	(of	algorithms) 41,	42

Dijkstra,	Edsger 19,	58,	75,	76

distributed	architecture 25

distributed	computing 84,	124

divide-and-rule 50,	116

digital	circuit 89

DNA 126,	127,	130

E
economics 77,	119

effectiveness	(of	algorithms) 36,	38

efficiency	(of	algorithms) 55

electronic	mail	(email) 15,	17,	20,	83

electronics 95

Elements,	The	(Euclid) 33

Eliot,	T.S. 6,	7

empirical	object 63

empirical	science xvi

engineering 30,	63,	80,	121

engineering	drawings 46

engineering	science 31,	80

environment 83

ergalics 130

Ershov,	A.P. 75

Euclid 33

Euclid’s	GCD	algorithm 36–8,	73,	74

evidence 47

exact	algorithm 109,	112

exhaustive	search 106,	111

experiment 8,	32,	102,	113

expert	knowledge 116

exponential	function 56,	59,	105

expression 48,	49,	51,	73

F
fabrication	technology 95

factorial 44,	45,	58

facts 43

file 17

finiteness	(of	algorithms) 36,	37,	38,	40

first	come	first	served	algorithm 111

first	fit	policy 108

Floridi,	Luciano 7,	9

Freeman,	Peter 129,	130

function 51

functional	style	of	programming 25

fundamental	particles 12

G
genetic	algorithm 127

genetic	engineering 31

gigabyte 5

goto	statement 37,	74,	96

goal 32

goal	state 114,	116

greatest	common	divisor	(GCD) 33

H
hardware 4,	22,	25,	31,	81,	82

hardware	description	language 24

hardwire 20

Hardy,	G.H. 57

Hartmanis,	Juris 60

Hero	of	Alexander 2

heuristic	algorithm 108,	110–13

heuristic	computing 104,	107–18,	126

heuristic	search 107–8,	109–10,	114–18,	122

heuristic	thinking 47,	101,	102

heuristics 101,	107,	115,	123

hierarchical	levels 14,	81,	85

hierarchical	organization 14,	90

hierarchy 6,	14,	18,	19,	22,	81

Higgs	boson 7,	12

high	level	language 47,	68,	69

Hindu	art	of	reckoning 33

Hoare,	C.A.R. 58,	76

Hoare’s	manifesto 76–7

homunculus 93

Hopcroft,	John 56

House	of	Wisdom,	Baghdad 33

human-computer	interface 29

human	needs	and	goals 31

human	thinking 2

human	understanding 10

humanities 120

hypothesis 114

I
ignorance 41

implementation 18,	22,	40,	45,	52,	62,	65,	79,	85,	121,	122

Industrial	Revolution 2

inference 6

infix	expression 48,	49,	51,	106

informaticist 129

Informatik xv,	3

information 3–12,	13,	21,	30,	40,	72,	88,	105

information,	meaningless 4,	5

information,	semantic 5

information	age xvi

information	organization 11

information	processes xv,	3,	4,	5,	6,	9,	11,	123,	126,	129,	130

information	retrieval 7,	11

information	revolution xvi

information	science 11

information	society xvi

information	structure 11

information	system 11

information	technology xvi

information	theory 4,	11,	12

informatique xv,	3

inner	(computer)	architecture 85–6,	89–95,	124

input/output 17,	18,	25,	36,	91

instruction	cycle 93–4,	98,	99,	124

instruction	execution	unit 91,	93

instruction	interpretation	unit 91,	92,	93,	94

instruction	format 88,	105

instruction	pipeline 99

instruction	register 93

instruction	set 86,	88

instruction	stream 98,	99,	110

instructions 22,	87,	92

integer	data	type 71,	87

integrated	circuit 95

interactive	computing 29–30,	121,	122

interconnection	network 100

International	Federation	for	Information	Processing	(IFIP) 3

Internet 5,	15,	83,	84

interpreter 15,	17,	18,	115,	118

intractable	problems 59–61

invention 42

iteration 37,	45,	55,	96

iteration	statement 74

J
Jacopini,	Giuseppe 74,	75

Janus 42,	63

K
Karp,	Richard 60

Keats,	John 57

knowledge 5,	6,	7,	10,	11,	13,	21,	30,	42,	43,	44,	45,	47,	105,	106,	120

knowledge	base 11

knowledge	discovery 6,	7

knowledge	engineering 11

knowledge	level 11

knowledge	processing 6,	7

knowledge	representation 11,	126

knowledge	space 46,	48,	49,	101,	115,	118

knowledge	structure 11

knowledge	system 11

Knuth,	Donald	E. 8,	9,	10,	12,	34,	58,	74,	75

Koestler,	Arthur 126

L
Laird,	John 123

Langley,	Patrick 9

language 24,	38,	47,	64,	65,	67–74

language	design 65

laptop 90

law 43

laws	of	engineering 42

laws	of	motion 22

laws	of	nature 31

laws	of	physics	and	chemistry 23,	42,	81

laws	of	thermodynamics 22

learning 120

levels	of	parallelism 98

liminal	computational	artefact 23,	24,	31,	62–4,	78,	83,	87,	101,	114

linear	search 54,	57,	59,	71

linguistic	categories 69

linguistic	relativity 67

linguistics 65

literate	programming 75

litmus	test 34–5,	41,	42,	106

local	area	network 84

logic 30,	47,	76,	123

logic	circuit 25

logic	level 90

logic	of	design 46

logical	expressions 61

long-term	memory 17,	18,	21,	87–8,	115,	118

Lovelace,	Ada	Augustus 2,	120

low-level	language 68

Lukasiewiz,	Jan 49

M
McCarthy,	John 113

McCulloch,	Warren 124

Machina	Speculatrix 2

machine	code 47,	49,	102

machine-dependent	language 68

machine	instructions 22,	89,	110

machine-independent	language 68,	69

magical	realism 104

material	computational	artefact 22,	24,	25,	31,	46,	81,	114

mathematical	activity 63,	121

mathematical	expression 76

mathematical	induction 43

mathematical	logic 30

mathematical	machine 76

mathematical	notation 67

mathematical	objects 63

mathematical	theory 76

mathematics 30,	33,	58

means	and	ends 32

means-ends-analysis 116

mechanical	engineering 20,	80

medium-term	(main)	memory 87,	88,	89,	92,	96

megabit 5

memory 17,	21,	22,	87,	89,	92

memory	address 87

memory	hierarchy 90,	124

memory	management 21

memory	system 90,	96,	100,	105

mentality 68,	119,	120,	121,	123

meta-heuristic 109

metalanguage 24

metaphor 35,	120,	123

methodology 24

microarchitecture 90

microprogram 95,	99

microprogrammed	control	unit 95

microprogrammer 95

microprogramming 94–5

microprogramming	language 24

mind 63,	64,	124,	125

Mind	as	Machine 124

mindless	thinking 42

Mindstorms 120

Minsky,	Marvin 124

modules 79,	87,	92,	100

molecular	biology xvi,	127

molecular	information	processing 126–7

Molière 33

Moore,	Gordon 95

Moore’s	law 95

multicomputing 84

multiplication 39–40,	106

multiprocessor	architecture 24,	100

N
natural	language 64,	65,	67,	69,	75

natural	object 63

natural	process 130

natural	science 30,	31,	119,	129,	131

natural	selection 119

need 32

network	protocols 84

neuclotide 130

neuron 124,	130

neuroscientist 64

Newcomen,	Thomas 2

Newell,	Allen 1,	12,	15,	102,	114,	123

non-deterministic	polynomial	time 60

non-recursive	algorithm 59

notation 36,	38,	49,	67,	69,	74

NP	class	of	problems 60,	61

NP-completeness 60,	61

O
objective	knowledge 42,	45,	120

observation 9,	32

Ode	on	a	Grecian	Urn 57

Ohm’s	law 22

ontology 130,	131

operand 50,	51,	93,	105

operating	system 21,	22,	23,	78,	85

operator 50

optimization 110,	111,	122

outer	(computer)	architecture 84–5,	86–9,	105

P
P	class	of	problems 60

P=NP	problem,	the 61

palindrome 28

Papert,	Seymour 120,	121,	123,	126

paradigm 33,	114,	115,	118,	131

parallel	computing 95–100

parallel	processing 96,	98,	99,	100,	110,	112,	122,	124

parallel	program 98

parenthesis-free	expression 48

parity	detection 26

Peano,	Guiseppe 43

perfect	information 105

performance 53

Perlis,	Alan 1,	12,	15

philosopher 63

physical	metallurgy 31

physical	symbol	system	hypothesis 114

physical	time 53

physics 3,	12,	77,	95,	119

pipeline	processing 99

pipelined	architecture 99

Pitts,	Warren 124

pocket	calculator 40,	41,	42

Polish	notation 49,	50

Polya,	George 101

polynomial	time 59,	61

polynomial	time	problems 59–60

Popper,	Karl 42,	103

precedence	rules 48,	49

primitive	data	type 71

private	memory 18

problem	classes 60

problem	domain 105

problem	size 53,	55

problem	solving 50,	107,	108,	120,	121,	122,	123

problem	space 107,	114,	115

procedural	knowledge 11,	42–5,	47,	106

procedure 35

process 62

processing	unit 92,	93,	96

production	rules 117

program	behaviour 92

program	correctness 52,	53,	77,	80

program	counter 93

programmer 9,	10,	11,	19,	83,	129

programming	as	art 74–5

programming	as	engineering 77–80

programming	as	mathematical	science 74–7

programming	language 24,	47,	64,	65,	67–74,	98

programming	theorist 9,	11

proof 52,	57,	63,	76,	77,	80

psychology 119

Pythagoras’s	theorem 44

R
read/write	head 25

real	number 92

reasoning 47

recipe 41

recursion 50,	52,	58

recursive	algorithm 51,	58,	59,	116

refinement 18,	81

registers 87,	89,	92,	96

reliability 78

representation 8

requirements	(for	design) 45,	79

reverse	Polish 49,	51

RNA 127

Rock,	The 6

Rosenbloom,	Paul 5,	11,	121,	123,	130

rules 10,	47,	48,	73

rules	of	composition 73–4

rules	of	semantics 76

rules	of	syntax 75

S
Sapir,	Edward 67

Sapir-Whorf	hypothesis 67

satisfiability	problem,	the 60

satisficing 109–10,	111,	112,	122

schema 126

science xvii,	8,	30,	47,	120,	129,	130

science	of	design 46,	47

science	of	programming 75,	76,	77

sciences	of	the	artificial 30–2,	64,	101,	119,	129,	130

scientific	problem	solving 103

scientific	revolutions 126

search 54,	56,	57,	59,	106,	107,	108,	115,	118

self-knowledge 120

semantic	gap 90

semantics 9,	76,	79

sequential	machine 74

sequential	processing 112

sequential	statement 73,	74

sequential	task	stream 96

Shannon,	Claude 4

shared	memory 18,	100

short-term-memory 88,	92

Shrager,	Jeffrey 9

Simon,	Herbert 1,	12,	14,	15,	31,	102,	109,	114,	123

simulation 103,	121,	122

smart	phone 40,	84

Snodgrass,	Richard 130

social	media 83

sociology 119

software 18,	19,	20,	22,	24,	25,	78,	80,	81

software	developer/engineer 19,	20,	83,	129

software	engineering 78,	79,	80

software	engineering	environment 79

software	life	cycle 78–9

software	maintenance 79

software	modification 79

software	specification 79

software	system 21,	79

software	verification	and	validation 79

solipsistic	computers 83–4

sociable	computers 83–4

space	complexity 54,	59,	112

speedup 96,	100

state	space 115

state	table 25–6

statement	type 73,	74

statements 72

steam	engine 2

Stearns,	Richard 60

strength	of	materials 31

strong	method 115–17,	122

structural	engineering 80

structured	data	type 71

style 74

subproblem 51

supercomputer 90

symbol	processing 12,	13,	28,	70,	81,	124,	125,	129,	130

symbol	processor 17,	81

symbol	structure 11,	12,	13,	23,	30,	41,	45,	46,	68,	69,	123,	124,	126

symbol	system 114

symbols 11,	12,	25,	26,	36,	69

syntax 9,	75,	76,	79

system	program 78

T

technology 82,	86,	95,	96,	126

termination	(of	algorithm) 38,	45

Thagard,	Paul 126

theorems 43,	63,	76,	77

theory 45,	47

theory	of	evolution 119

theory	of	knowledge 11

theory	of	structures 31

theory	of	syntax 75,	76

thermodynamics 31

thinking	machine 2

thought	experiment 113

throughput 96,	100

time 53,	55

time	complexity 54,	59,	105,	112,	113

tools 18,	21,	24,	42,	122

top	down	approach 122

tractable	problems 59,	61

travelling	salesman	problem,	the 59,	60

Turing,	Alan xv,	25,	28,	113,	123

Turing	machine 13,	24,	25–9,	30,	60,	113

Turing	test 114

Turing’s	thesis 28,	30

Turner,	Mark 126

U
Ullman,	Jeffrey 56

uncertainty 5,	118

unconditional	branch 74

uniprocessor	architecture 24

universal	science 129

universal	Turing	machine 28

universe	of	discourse 20

user-interface 15,	17,	20,	24

utilitarian	artefact 53

V
variable 71

verification	and	validation 79

very-short-term	memory 87,	92

virtual	machine 15,	21,	78,	85

virtual	memory 21

von	Neumann,	John 81,	124

von	Neumann	style 25

W
Walter,	Grey 2

water	clock 2

Watson,	James 126

Watt,	James 2

weak	method 115–16,	122

weight	driven	clock 2

Whorf,	Benjamin	Lee 67

Wilkes,	Maurice 2,	4,	95,	102

Wing,	Jeanette 120,	121,	122,	123

word	length 88,	105

working	memory 18,	87,	88

world,	artificial 14

world,	natural 14

World	Wide	Web 15,	17,	20,	83

worst	case	performance 53,	55

SOCIAL	MEDIA
A	Very	Short	Introduction

Join	our	community
www.oup.com/vsi/
•	Join	us	online	at	the	official	Very	Short	Introductions	Facebook	page.

•	Access	the	thoughts	and	musings	of	our	authors	with	our	online	blog.

•	Sign	up	for	our	monthly	e-newsletter	to	receive	information	on	all	new	titles	publishing
that	month.

•	Browse	the	full	range	of	Very	Short	Introductions	online.

•	Read	extracts	from	the	Introductions	for	free.

•	Visit	our	library	of	Reading	Guides.	These	guides,	written	by	our	expert	authors	will
help	you	to	question	again,	why	you	think	what	you	think.

•	If	you	are	a	teacher	or	lecturer	you	can	order	inspection	copies	quickly	and	simply	via
our	website.

http://www.oup.com/vsi/

	Halftitle page
	Series page
	Title page
	Copyright page
	Dedication page
	Contents
	Preface
	Acknowledgements
	List of illustrations
	1 The ‘stuff’ of computing
	An automaton called ‘computer’
	Computing as information processing
	‘Meaningless’ information
	‘Meaningful’ (or semantic) information
	Is information knowledge?
	Is information data?
	The programmer’s point of view
	Symbol structures as the common denominator

	2 Computational artefacts
	Compositional hierarchy
	Abstraction/refinement
	Hierarchy by construction
	Three classes of computational artefacts
	The ‘great unifier’
	Interactive computing
	Computer science as a science of the artificial

	3 Algorithmic thinking
	The litmus test
	When is a procedure an algorithm?
	‘Go forth and multiply’
	The determinacy of algorithms
	Algorithms are abstract artefacts
	Algorithms are procedural knowledge
	Designing algorithms
	The problem of translating arithmetic expressions
	The ‘goodness’ of algorithms as utilitarian artefacts
	The aesthetics of algorithms
	Intractable (‘really difficult’) problems

	4 The art, science, and engineering of programming
	Programs are liminal artefacts
	Language, thought, reality, and programming
	Programming languages as abstract artefacts
	Concepts and categories in programming languages
	Programming as art
	Programming as a mathematical science
	Programming as (software) engineering

	5 The discipline of computer architecture
	Solipsistic and sociable computers
	Outer and inner architectures
	The outer architecture
	The inner architecture
	‘The computer-within-the computer’
	Microprogramming
	Parallel computing
	The science in computer architecture

	6 Heuristic computing
	Search and ye may find
	A meta-heuristic called ‘satisficing’
	A heuristic algorithm
	Heuristics and artificial intelligence
	Weak methods and strong methods
	Interpreting heuristic rules

	7 Computational thinking
	A certain mentality
	Computational thinking as mental skills
	Thinking computationally about the mind
	The computational brain
	The emergence of cognitive science
	Understanding human creativity
	Understanding molecular information processing

	Epilogue: is computer science a universal science?
	Further reading
	Index
	Social Media

